963 resultados para Micro watershed
Resumo:
Agro-ecological resource use pattern in a traditional hill agricultural watershed in Garhwal Himalaya was analysed along an altitudinal transect. Thirty one food crops were found, although only 0.5% agriculture land is under irrigation in the area. Fifteen different tree species within agroforestry systems were located and their density varied from 30-90 trees/ha. Grain yield, fodder from agroforest trees and crop residue were observed to be highest between 1200 and 1600 m a.s.l. Also the annual energy input- output ratio per hectare was highest between 1200 and 1600 m a.s.l. (1.46). This higher input- output ratio between 1200-1600 m a.s.l. was attributed to the fact that green fodder, obtained from agroforestry trees, was considered as farm produce. The energy budget across altitudinal zones revealed 95% contribution of the farmyard manure and the maximum output was in terms of either crop residue (35%) or fodder (55%) from the agroforestry component. Presently on average 23%, 29% and 41% cattle were dependent on stall feeding in villages located at higher, lower and middle altitudes respectively. Similarly, fuel wood consumption was greatly influenced by altitude and family size. The efficiency and sustainability of the hill agroecosystem can be restored by strengthening of the agroforestry component. The approach will be appreciated by the local communities and will readily find their acceptance and can ensure their effective participation in the programme.
Resumo:
The influences of clearing native vegetation (Caatinga) in contour strips at 25 cm vertical interval on evaporation losses in cleared strips, annual runoff efficiency and annuall soil loss on gently sloped micro-waterheds in the arid zones of Northeast Brazil are reported. The alternate native vegetation (Caatinga) strips function very effectively as windbreaks thus reducing evaporation losses substantially in the leeward cleared strips. The runoff measured at the micro-watershed with cleared strips was many-fold lower than the runoff obtained at a completely denuded watershed even when it was protected by narrow based channel terraces. However, the annual runoff efficiency can be significantly increased in a strip cleared watershed if narrow based channel terraces are provided on the lower side of cleared strips. The annual soil losses in strip cleared watersheds as well as completely denuded waterhed of gentle slopes were negligible. Thus clearing land in alternate contour strips on a micro-watersheds shall substantially improve crop water use efficiency without creating any significant erosion problems. Additionally this treatment will increase runoff for water harvesting for irrigation purposes.
Resumo:
The present work of research was developed in rubber tree plantation, clone RRIM 600, with 15 years of age, in the region of Jose Bonifácio - SP, situated 21°03′ latitude (s), 49°41′ of longitude (w) and 490 altitude of m, to the sum of the micro watershed of the river Barra Grande. The research had the purpose to evaluate the redistribution of precipitations in hidric year 1995/96, esteem the rain precipitation, effective, throughfall, stemflow and the interception by canopies of the rubber tree. They had been installed the open sky and under the canopy of the trees rain gauges and interception of trunk to quantify (mm) the redistribution of rains. The annual average rain precipitation was of 1053,6 mm, the throughfall of 699,4 mm and stemflow for the 92,3 mm. the interception by canopies and the precipitation effective had resulted in 261,9 and 791,7 mm; being these respectively 24.9% and 75.1% of the rain precipitation in the rubber tree.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The morphometric characterization of watersheds is of great importance in assisting the planning of these areas to preserve the environment and maintain the quantity and quality of water production. The aim of this study was to characterize the morphology and simulate the areas of permanent preservation according to the Brazilian Forest Code of watershed of the Água-Fria stream. The studied area is located in the municipality of Bofete-SP, between the geographic coordinates: 48° 09' 30" to 48° 18' 30" longitude (WGr) and 22° 58' 30" to 23° 04' 30" latitude S. The results showed a 5th order micro watershed with an area of 152.43 km2 and low drainage density of 1.04 km/km2. Circularity was 0.51 and form factor was 0.41, which is considered low, and therefore with an oblong/oval shape. The sinuosity index of 1.29 revealed a tendency of rectilinear channels with compactness coefficient value of 1.38 and distance of runoff flow of 520m. Simulation of areas of permanent preservation shows an ideal model as the way springs and watercourses should be protected according to the Brazilian Forest Code, amounting to an area of 10.02 km2.
Resumo:
The objective of this study was to evaluate geoprocessing to morphometrically characterize the Ribeirão Descalvado micro watershed – Botucatu, SP by the Geographic Information System (GIS) – Selva for preservation, rationalization of its use and environmental restoration. The micro watershed is 2,228.61 ha between the geographic coordinates: 22° 50' 05" to 22° 54' 26" latitude S and 48° 22' 29" to 48° 26' 36" longitude W Gr. The cartographic basis was the planialtimetric chart of Botucatu (SP), 1: 50000 scale (IBGE, 1969), used for extraction of level, hydrography and topography curves to determine morphometric indices. The results showed that low values of drainage density associated with the presence of permeable rocks facilitates ground water infiltration which decreases surface runoff, erosion risks and environmental degradation. The low value of the shape factor supported by the circularity index shows that the micro watershed is more elongated and at lower risk of more pronounced floods. The roughness coefficient environmental parameter classified the micro watershed for forest and reforestation.
Resumo:
La microcuenca del río Poás (ubicada entre el volcán Barva y el volcán Poás, hasta la confluencia con el río Grande cerca de la ciudad de Alajuela) posee un alto potencial para la formación de acuíferos de alta calidad. Por este motivo sus recursos naturales deben utilizarse adecuadamente. La mejor manera de lograr lo anterior es mediante la planificación del uso de la tierra. En esta investigación se plantea para ello el ordenamiento territorial y el manejo de cuencas. Para este propósito se realiza una zonificación mediante la cual se identifican las siguientes zonas: sin restricción de uso, uso restringido y uso muy restringido. La mayor parte de la m icrocuenca (64,6%) se encuentra en la categoría de “sin restricción de uso”. Sin embargo. se hace necesaria la intervención con rapidez en sectores ubicados en la parte alta de la microcuenca que se clasifican de “uso muy restringido”. En relación con el recurso hídrico, en la microcuenca en los últimos 14 años y de acuerdo con la metodología aplicada, se ha elevado la producción hídrica, específicamente en la escorrentía y la ganancia. En general aumentó en 1,6%.Abstract:The Poas river micro watershed (located between the Barva and Poas volcanoes reaching the confluence of the Grande river near the city of Alajuela) has high potential for developing high quality aquifers, thus, its natural resnurces should be utilized adequately. This is best done by proper land use planning. In this study guidelines are presented for land use planning and watershed management. Land use is zoned or classified for the following uses:unrestricted use, restricted use, and highly restricted use. Most of the micro watershed (64.6 percent) is classified or zoned as ‘unrestricted use.’ However, urgent intervention is needed in demand and the possibility to export it. However, it is also possible to see the negative impaci of the project, such as: indigenous territories and a pan of the Interamerican Road being flooding, population displacement and the environmental ¡mpact on the Terraba-Sierpe mangrove. This diversity and incompatibility of factors and interest make a complex scenario that potentializes diverse conflicts.
Resumo:
La microcuenca del río Poás (ubicada entre el volcán Barva y el volcán Poás, hasta la confluencia con el río Grande cerca de la ciudad de Alajuela) posee un alto potencial para la formación de acuíferos de alta calidad. Por este motivo sus recursos naturales deben utilizarse adecuadamente. La mejor manera de lograr lo anterior es mediante la planificación del uso de la tierra. En esta investigación se plantea para ello el ordenamiento territorial y el manejo de cuencas. Para este propósito se realiza una zonificación mediante la cual se identifican las siguientes zonas: sin restricción de uso, uso restringido y uso muy restringido. La mayor parte de la microcuenca (64,6%) se encuentra en la categoríade “sin restricción de uso”. Sin embargo. se hace necesaria la intervención con rapidez en sectores ubicados en la parte alta de la microcuenca que se clasifican de “uso muy restringido”. En relación con el recurso hídrico, en la microcuenca en los últimos 14 años y de acuerdo con la metodología aplicada, se ha elevado la producción hídrica, específicamente en la escorrentía y la ganancia. En general aumentó en 1,6%.Abstract: The Poas river micro watershed (located between the Barva and Poas volcanoes reaching the confluence of the Grande river near the city of Alajuela) has high potential for developing high quality aquifers. thus, its natural resources should be utilized adequately. This is best done by proper land use planning. In this study guidelines are presented for land use planning and watershed management. Land use is zoned or classified for the following uses: unrestncted use, restricted use, and highly restricted use. Most of the micro watershed (64.6 percent) is classified or zoned as ‘unrestricted use.’ However, urgent intervention is needed in the upper areas of the micro watershed cla.ssified as ‘highly restricted use.’ In the Iast l4years. according Lo the methodology applied, hydrologic production has increased about 1.6 percent. specifically in runoff and soil moisture surpius.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG