898 resultados para Micro Biota and Starter Cultures
Resumo:
Dry fermented sausages are highly appreciated food specialties, mainly in Portugal and other southern European countries. Therefore, all research efforts aiming at improving the food quality and safety of traditional dry sausages are of interest, since they are likely to result in products with higher added value and quality standards most suited to the requirements and concerns of the modern consumers. Among those efforts, it may be highlighted the studies involving innovative processing parameters and technologies to overcome practical problems gathered in the meat industry, which are mostly associated with food quality and safety. Additionally, characterization of traditional dry sausages and rationalization of their processing are essential for further achievement of any official certification. Thus, this article attempts to point out some research lines of highest interest in meat science (and particularly to the broad variety of regional dry fermented sausages), towards to the valorisation of technological, nutritional and commercial features. In addition, it is here emphasized the importance for the continuous improvement of the quality and safety of meat products as a way to respond to the current concerns regarding its consumption and the general advices in reducing its daily intake.
Resumo:
The aim of this study was to assess selective plating methodologies for the enumeration and identification of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis in fermented milks. Seven agar media (MRS with added sorbitol, clindamycin or vancomycin, acidified MRS, RCA with added aniline blue and dicloxacilin, M17 and ST) were evaluated. The results showed that RCA dicloxacilin agar was suitable for the selective enumeration of B. animalis ssp. lactis in fermented milk. Either MRS (acidified) or M17 agar could be used for enumeration of L. delbrueckii ssp. bulgaricus and S. thermophilus, respectively. MRS media containing antibiotics were effective for the enumeration of the probiotic organisms (L. rhamnosus and L. acidophilus) inoculated in fermented milks.
Resumo:
In the present study, technological properties of L. plantarum strains isolated from naturally fermented sausages manufactured in the South region of Brazil were investigated in order to obtain a starter culture. The technological properties evaluated were the following: ability to growth at different pH values, at different temperatures, in different salt concentrations and in the presence of commercial curing salt, fast production of acid, determination of D - and L - lactic acid; nitrate reductase activity; antagonistic activity and stability of the isolated cultures after fermentation, concentration, and freeze-drying process. The isolated strains showed effectiveness to improve technological properties as starter cultures.
Resumo:
Dairy products that contain probiotic bacteria are those that are produced with various fermentation methods, especially lactic acid fermentation, by using starter cultures and those that have various textures and aromas. Fermented dairy products are popular due to their differences in taste and their favourable physiological effects. Today, fermented dairy beverages in general are produced locally by using traditional methods. Recently, due to the increased demand for natural nutrients and probiotic products, fermented dairy beverages have reached a different position and are considered to have an important impact on human health and nutrition. In this article, probiotic bacteria and functional dairy products that are produced by using probiotic bacteria are discussed.
Resumo:
The effect of milk processing on rheological and textural properties of probiotic low-fat yogurt (fermented by two different starter cultures) was studied. Skim milk fortified with skim milk powder was subjected to three treatments: (1) thermal treatment at 85C for 30 min; (2) high hydrostatic pressure (HHP) at 676 MPa for 5 min; and (3) combined treatments of HHP (676 MPa for 5 min) and heat (85C for 30 min). The processed milk was fermented using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium longum at inoculation rates of 0.1 and 0.2%. Rheological parameters were determined and a texture profile analysis was carried out. Yogurts presented different rheological behaviors according to the treatment used, which could be attributed to structural phenomena. The combined HHP and heat treatment of milks resulted in yogurt gels with higher consistency index values than gels obtained from thermally treated milk. The type of starter culture and inoculation rate, providing different fermentation pathways, also affected the consistency index and textural properties significantly. The combined HHP and heat treatment of milks before fermentation, and an inoculation rate of 0.1% (for both cultures), led to desirable rheological and textural properties in yogurt, which presented a creamy and thick consistency that does not require the addition of stabilizers.
Resumo:
A survey of starter and probiotic cultures was carried out to determine the current antibiotic resistance situation in microbial food additives in Switzerland. Two hundred isolates from 90 different sources were typed by molecular and other methods to belong to the genera Lactobacillus (74 samples), Staphylococcus (33 samples), Bifidobacterium (6 samples), Pediococcus (5 samples), or were categorized as lactococci or streptococci (82 samples). They were screened for phenotypic resistances to 20 antibiotics by the disk diffusion method. Twenty-seven isolates exhibiting resistances that are not an intrinsic feature of the respective genera were further analyzed by microarray hybridization as a tool to trace back phenotypic resistances to specific genetic determinants. Their presence was finally verified by PCR amplification or Southern hybridization. These studies resulted in the detection of the tetracycline resistance gene tet(K) in 5 Staphylococcus isolates used as meat starter cultures, the tetracycline resistance gene tet(W) in the probiotic cultures Bifidobacterium lactis DSM 10140 and Lactobacillus reuteri SD 2112 (residing on a plasmid), and the lincosamide resistance gene lnu(A) (formerly linA) in L. reuteri SD 2112.
Resumo:
Processed meat products are of worldwide importance and, because of their intrinsic factors as well as the processing methods, they are highly prone to fungal and mycotoxin contamination. Ochratoxin A (OTA) is the most significant mycotoxin in processed meat products. Penicillium nordicum is considered to be responsible for OTA contamination of meat products, as it is highly adapted to salt and protein-rich matrices and is moderately psycrotrophic. However, another OTA-producing fungus, Aspergillus westerdijkiae, adapted to carbon-rich matrices such as cereals and coffee beans, has been recently associated with high levels of OTA in meat products. Several Lactic Acid Bacteria (LAB) and yeasts have been tested as biocontrol agents against P. nordicum growth and OTA production in meat products, with promising results, but none of the studies have considered A. westerdijkiae. The aim of this work was to evaluate in vitro the effect of a commercial starter culture used in sausage fermentation and four yeasts isolated from dry-cured sausage on these two OTA-producing fungi, both in terms of fungal growth and of OTA production, using different meat-based culture media as model systems. The mechanisms underlying the observed effect were also studied. For this purpose, C. krusei, C. zeylanoides, R. mucilaginosa, R. glutinis, a mix of these yeasts and the starter culture were co-inoculated with P. nordicum and A. westerdijkiae in industrial sausage, traditional sausage, and ham-based media, under conditions of water activity, salt concentration and temperature that mimic real conditions at beginning and end of sausage curing process. Fungal growth was determined by measuring colony diameter, and OTA production was quantified by HPLC-FLD after extraction with methanol. Yeasts where found to inhibit significantly the growth of both fungi. P. nordicum was unable to produce detectable OTA in both sausage-based media under any condition. In ham, yeasts reduced OTA production, while the starter culture significantly increased it. Unexpectedly, OTA production by A. westerdijkiae was significantly stimulated in all media tested by all microorganisms. Matrix has a significant effect on OTA production by P. nordicum, but not by A. westerdijkiae, for which only temperature showed to have effect. By testing the mechanisms of action by which starter culture and C. zeylanoides influenced fungal responses, we were able to determine that direct contact and simultaneous growth of test organisms were the mechanisms more significantly involved in the responses. In conclusion, ochratoxigenic fungi do not all respond to antagonistic microorganisms in the same way. The use of biocontrol agents with the intent of reducing fungal growth and mycotoxin production by one fungus can have unexpected effects on others, thus leading to unforeseen safety problems. Further experiments are recommended to properly understand the reasons behind the different effects of microorganisms, to ensure their safe as biocontrol agents.
Resumo:
This study investigated the viability of probiotic (Lactobacillus acidophilus LA5, Lactobacillus rhamnosus LBA and Bifidobacterium animalis subsp. lactis BL-04) in milk fermented with Lactobacillus delbrueckii subsp. bulgaricus LB340 and Streptococcus thermophilus TAO (yoghurt - Y). Each probiotic strain was grown separately in co-culture with Y and in blends of different combinations. Blends affected fermentation time(s), pH and firmness during storage at 4 degrees C. The product made with Y plus B. animalis subsp. lactis and L. rhamnosus had counts of viable cells at the end of shelf life that met the minimum required to achieve probiotic effect. However, L. acidophilus and L. delbrueckii subsp. bulgaricus were inhibited.
Resumo:
The most promising microorganisms for use as starter cultures are those isolated from the native microbiota of traditional fermented products. The aim of this study was to evaluate the use of lactic acid bacteria selected from the native microbiota of sausages produced by spontaneous fermentation as starter cultures for the production of sausage. Strains of Lactobacillus plantarum 503 and 341 have the potential for use as starter cultures in the manufacture of Italian sausage type. The population of lactic acid bacteria in sausages was >8 log CFU.g-1 during fermentation, which caused the pH to decrease to <4.5. This decrease in pH and the water activity of < 0.90 of sausages ensures the safety and preservation of this product. Sausages produced with these lactic cultures fulfill the requirements for microbiological quality and composition of Italian sausage type. Our results suggest the possibility of using these starter cultures for the production of sausages with peculiar characteristics that contribute to the identity of the product.
Resumo:
Icewine is a sweet dessert wine fermented from the juice of grapes naturally frozen on the vine. The production of Icewine faces many challenges such as sluggish fermentation, which often yields wines with low ethanol, and an accumulation of high concentration of volatile acidity, mainly in the form of acetic acid. This project investigated three new yeast strains as novel starter cultures for Icewine fermentation with particular emphasis on reducing acetic acid production: a naturally occurring strain of S. bayanus/S. pastorianus isolated from Icewine grapes, and two hybrids between S. cerevisiae and S. bayanus, AWRI 1571 and AWRI 1572. These strains were evaluated for sugar consumption patterns and metabolic production of ethanol, glycerol and acetic acid, and were compared to the performance of a standard commercial wine yeast KI-VI116. The ITS rONA region of the two A WRI crosses was also analyzed during fermentations to assess their genomic stability. Icewine fermentations were performed in sterile filtered juice, in the absence of indigenous microflora, and also in unfiltered juice in order to mirror commercial wine making practices. The hybrid A WRI 1572 was found to be a promising candidate as a novel starter culture for Icewine production. I t produced 10.3 % v/v of ethanol in sterile Riesling Icewine fermentations and 11.2 % v/v in the unfiltered ones within a reasonable fermentation time (39 days). Its acetic acid production per gram sugar consumed was approximately 30% lower in comparison with commercial wine yeast K I -V 1116 under both sterile filtered and unfiltered fermentations. The natural isolate S. bayanus/S. pastorianus and AWRI 1571 did not appear to be suitable for commercial Icewine production. They reached the target ethanol concentration of approximately 10 % v/v in 39 day fermentations and also produced less acetic acid as a function of both time and sugar consumed in sterile fermentations compared to KI-V1116. However, in unfiltered fermentations, both of them failed to produce the target concentration of ethanol and accumulated high concentration of acetic acid. Both A WRI crosses displayed higher loss of or reduced copies in ITS rDNA region from the S. bayanus parent compared to the S. cerevisiae parent; however, these genomic losses could not be related to the metabolic profile.
Resumo:
Two in vitro experiments were conducted to analyse the effects of replacing dietary barley grain with wastes of tomato and cucumber fruits and a 1 : 1 tomato : cucumber mixture on rumen fermentation characteristics and microbial abundance. The control (CON) substrate contained 250 g/kg of barley grain on a dry matter (DM) basis, and another 15 substrates were formulated by replacing 50, 100, 150, 200 or 250 g of barley grain/kg with the same amount (DM basis) of tomato or cucumber fruits or 1 : 1 tomato : cucumber mixture. In Expt 1, all substrates were incubated in batch cultures with rumen micro-organisms from goats for 24 h. Increasing amounts of tomato, cucumber and the mixture of both fruits in the substrate increased final pH and gas production, without changes in final ammonia-nitrogen (NH3-N) concentrations, substrate degradability and total volatile fatty acid (VFA) production, indicating that there were no detrimental effects of any waste fruits on rumen fermentation. Therefore, in Expt 2 the substrates including 250 g of waste fruits (T250, C250 and M250 for tomato, cucumber and the mixture of both fruits, respectively) and the CON substrate were incubated in single-flow continuous-culture fermenters for 8 days. Total VFA production did not differ among substrates, but there were differences in VFA profile. Molar proportions of propionate, isobutyrate and isovalerate were lower and acetate : propionate ratio was greater for T250 compared with CON substrate. Fermentation of substrates containing cucumber (C250 and M250) resulted in lower proportions of acetate, isobutyrate and isovalerate and acetate : propionate ratio, but greater butyrate proportions than the CON substrate. Carbohydrate degradability and microbial N synthesis tended to be lower for substrates containing cucumber than for the CON substrate, but there were no differences between CON and T250 substrates. Abundance of total bacteria, Fibrobacter succinogenes and Ruminococcus flavefaciens, fungi, methanogenic archaea and protozoa were similar in fermenters fed T250 and CON substrates, but fermenters fed C250 and M250 substrates had lower abundances of R. flavefaciens, fungi and protozoa than those fed the CON substrate. Results indicated that tomato fruits could replace dietary barley grain up to 250 g/kg of substrate DM without noticeable effects on rumen fermentation and microbial populations, but the inclusion of cucumber fruits at 250 g/kg of substrate DM negatively affected some microbial populations as it tended to reduce microbial N synthesis and changed the VFA profile. More studies are needed to identify the dietary inclusion level of cucumber which produces no detrimental effects on rumen fermentation and microbial growth.
Resumo:
In Mediterranean countries, such as Portugal, traditional dry-fermented sausages are highly appreciated. They are often still being manufactured in small processing units, according to traditional procedures. The aims of the present study were to evaluate the effect of different starter cultures and their optimal concentration, to reduce the microbial load in end-products, with the purpose to improve the sausages’ safety, without deteriorating sensory acceptability. pH, aw, colour, texture and microbiological profile were assessed. On the other hand, a sensory panel evaluated the products. Based on the first results, S. xylosus and L. sakei were chosen to be inoculated together with a yeast strain. In the mixed starter culture experiment, a food safety issue arose probably related to the higher aw value (0.91). The presence of Salmonella spp. detected in a few end-products sausages did not allow a full sensory evaluation in the mixed starter culture experiment. However, in the two preliminary experiments, the use of starter cultures did not depreciate the panellists’ overall appreciation and products acceptability.
Resumo:
Traditional dry-cured sausages are highly appreciated in Mediterranean countries. The aim of the present study was to evaluate the effect of different starter cultures in the sausages Alentejano pig meat was used to prepare drycured sausages in a local factory. Staphylococcus xylosus, Lactobacillus sakei and a yeast strain were inoculated at a concentration of 106 cfu/g meat batter both in separate and in mixed culture. Three independent batches with two replicates per treatment were produced. Samples were collected throughout the ripening process. pH and aw were determined according to the ISO standards. Microbiological counts of total mesophiles, total psycrotrophs, anaerobes, coagulase-negative staphylococci (CNS), lactic acid bacteria (LAB), enterobacteria, yeasts and moulds and Listeria monocytogenes were done according to the respective ISO standards, as well as detection of Salmonella spp. Biogenic amines quantification was performed by HPLC as described by Roseiro et al. (1). The treatment with L. sakei alone was the most effective in reducing the contamination level both with Salmonella spp. and L. monocytogenes, however this effect seems to be lost in the mixed cultures. The presence of the yeast strain seems to increase the levels of phenylethylamine and histamine. The contents in cadaverine, putrescine and tyramine were generally lower in the inoculated sausages. Regarding tyramine, the treatments with L. sakei showed significantly lower values. No significant differences between treatments were observed for both spermine and spermidine.
Resumo:
This PhD project focuses on the study of the early stages of bone biomineralization in 2D and 3D cultures of osteoblast-like SaOS-2 osteosarcoma cells, exposed to an osteogenic cocktail. The efficacy of osteogenic treatment was assessed on 2D cell cultures after 7 days. A large calcium minerals production, an overexpression of osteogenic markers and of alkaline phosphatase activity occurred in treated samples. TEM microscopy and cryo-XANES micro-spectroscopy were performed for localizing and characterizing Ca-depositions. These techniques revealed a different localization and chemical composition of Ca-minerals over time and after treatment. Nevertheless, the Mito stress test showed in treated samples a significant increase in maximal respiration levels associated to an upregulation of mitochondrial biogenesis indicative of an ongoing differentiation process. The 3D cell cultures were realized using two different hydrogels: a commercial collagen type I and a mixture of agarose and lactose-modified chitosan (CTL). Both biomaterials showed good biocompatibility with SaOS-2 cells. The gene expression analysis of SaOS-2 cells on collagen scaffolds indicated an osteogenic commitment after treatment. and Alizarin red staining highlighted the presence of Ca-spots in the differentiated samples. In addition, the intracellular magnesium quantification, and the X-ray microscopy on mineral depositions, suggested the incorporation of Mg during the early stages of bone formation process., SaOS-2 cells treated with osteogenic cocktail produced Ca mineral deposits also on CTL/agarose scaffolds, as confirmed by alizarin red staining. Further studies are underway to evaluate the differentiation also at the genetic level. Thanks to the combination of conventional laboratory methods and synchrotron-based techniques, it has been demonstrated that SaOS-2 is a suitable model for the study of biomineralization in vitro. These results have contributed to a deeper knowledge of biomineralization process in osteosarcoma cells and could provide new evidences about a therapeutic strategy acting on the reversibility of tumorigenicity by osteogenic induction.