855 resultados para Methods : N-body Simulations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an algorithm that computes the gravitational potentials and forces on N point-masses interacting in three-dimensional space. The algorithm, based on analytical techniques developed by Rokhlin and Greengard, runs in order N time. In contrast to other fast N-body methods such as tree codes, which only approximate the interaction potentials and forces, this method is exact ?? computes the potentials and forces to within any prespecified tolerance up to machine precision. We present an implementation of the algorithm for a sequential machine. We numerically verify the algorithm, and compare its speed with that of an O(N2) direct force computation. We also describe a parallel version of the algorithm that runs on the Connection Machine in order 0(logN) time. We compare experimental results with those of the sequential implementation and discuss how to minimize communication overhead on the parallel machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the methods adopted to reduce body mass (BM) in competitive athletes from the grappling (judo, jujitsu) and striking (karate and tae kwon do) combat sports in the state of Minas Gerais, Brazil. An exploratory methodology was employed through descriptive research, using a standardized questionnaire with objective questions self-administered to 580 athletes (25.0 +/- 3.7 yr, 74.5 +/- 9.7 kg, and 16.4% +/- 5.1% body fat). Regardless of the sport, 60% of the athletes reported using a method of rapid weight loss (RWL) through increased energy expenditure. Strikers tend to begin reducing BM during adolescence. Furthermore, 50% of the sample used saunas and plastic clothing, and only 26.1% received advice from a nutritionist. The authors conclude that a high percentage of athletes uses RWL methods. In addition, a high percentage of athletes uses unapproved or prohibited methods such as diuretics, saunas, and plastic clothing. The age at which combat sport athletes reduce BM for the first time is also worrying, especially among strikers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the proceedings from a two-day workshop held at Swinburne University on 2005 May 24-25. The workshop participants highlighted current Australian research on both theoretical and observational aspects of galaxy groups. These proceedings include short one-page summaries of a number of the talks presented at the workshop. The talks presented ranged from reconciling N-body simulations with observations, to the Hi content of galaxies in groups and the existence of 'dark galaxies'. The formation and existence of ultra-compact dwarfs in groups, and a new supergroup in Eridanus were also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last decade has witnessed the establishment of a Standard Cosmological Model, which is based on two fundamental assumptions: the first one is the existence of a new non relativistic kind of particles, i. e. the Dark Matter (DM) that provides the potential wells in which structures create, while the second one is presence of the Dark Energy (DE), the simplest form of which is represented by the Cosmological Constant Λ, that sources the acceleration in the expansion of our Universe. These two features are summarized by the acronym ΛCDM, which is an abbreviation used to refer to the present Standard Cosmological Model. Although the Standard Cosmological Model shows a remarkably successful agreement with most of the available observations, it presents some longstanding unsolved problems. A possible way to solve these problems is represented by the introduction of a dynamical Dark Energy, in the form of the scalar field ϕ. In the coupled DE models, the scalar field ϕ features a direct interaction with matter in different regimes. Cosmic voids are large under-dense regions in the Universe devoided of matter. Being nearby empty of matter their dynamics is supposed to be dominated by DE, to the nature of which the properties of cosmic voids should be very sensitive. This thesis work is devoted to the statistical and geometrical analysis of cosmic voids in large N-body simulations of structure formation in the context of alternative competing cosmological models. In particular we used the ZOBOV code (see ref. Neyrinck 2008), a publicly available void finder algorithm, to identify voids in the Halos catalogues extraxted from CoDECS simulations (see ref. Baldi 2012 ). The CoDECS are the largest N-body simulations to date of interacting Dark Energy (DE) models. We identify suitable criteria to produce voids catalogues with the aim of comparing the properties of these objects in interacting DE scenarios to the standard ΛCDM model, at different redshifts. This thesis work is organized as follows: in chapter 1, the Standard Cosmological Model as well as the main properties of cosmic voids are intro- duced. In chapter 2, we will present the scalar field scenario. In chapter 3 the tools, the methods and the criteria by which a voids catalogue is created are described while in chapter 4 we discuss the statistical properties of cosmic voids included in our catalogues. In chapter 5 the geometrical properties of the catalogued cosmic voids are presented by means of their stacked profiles. In chapter 6 we summarized our results and we propose further developments of this work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark-energy equation-of-state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. Methods We implemented an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-redshift galaxies. Results Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae alone; the parameter uncertainties are underestimated by 10%. The weak-lensing field-to-field variance between 1 deg2-MegaCam pointings is 5-15% higher than predicted from N-body simulations. We find no bias in the lensing signal at high redshift, within the framework of a simple model, and marginalising over cosmological parameters. Assuming a systematic underestimation of the lensing signal, the normalisation increases by up to 8%. Combining all three probes we obtain -0.10 < 1 + w < 0.06 at 68% confidence ( -0.18 < 1 + w < 0.12 at 95%), including systematic errors. Our results are therefore consistent with the cosmological constant . Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapid evolution of nanotechnology appeals for the understanding of global response of nanoscale systems based on atomic interactions, hence necessitates novel, sophisticated, and physically based approaches to bridge the gaps between various length and time scales. In this paper, we propose a group of statistical thermodynamics methods for the simulations of nanoscale systems under quasi-static loading at finite temperature, that is, molecular statistical thermodynamics (MST) method, cluster statistical thermodynamics (CST) method, and the hybrid molecular/cluster statistical thermodynamics (HMCST) method. These methods, by treating atoms as oscillators and particles simultaneously, as well as clusters, comprise different spatial and temporal scales in a unified framework. One appealing feature of these methods is their "seamlessness" or consistency in the same underlying atomistic model in all regions consisting of atoms and clusters, and hence can avoid the ghost force in the simulation. On the other hand, compared with conventional MD simulations, their high computational efficiency appears very attractive, as manifested by the simulations of uniaxial compression and nanoindenation. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This PhD thesis concerns the computational modeling of the electronic and atomic structure of point defects in technologically relevant materials. Identifying the atomistic origin of defects observed in the electrical characteristics of electronic devices has been a long-term goal of first-principles methods. First principles simulations are performed in this thesis, consisting of density functional theory (DFT) supplemented with many body perturbation theory (MBPT) methods, of native defects in bulk and slab models of In0.53Ga0.47As. The latter consist of (100) - oriented surfaces passivated with A12O3. Our results indicate that the experimentally extracted midgap interface state density (Dit) peaks are not the result of defects directly at the semiconductor/oxide interface, but originate from defects in a more bulk-like chemical environment. This conclusion is reached by considering the energy of charge transition levels for defects at the interface as a function of distance from the oxide. Our work provides insight into the types of defects responsible for the observed departure from ideal electrical behaviour in III-V metal-oxidesemiconductor (MOS) capacitors. In addition, the formation energetics and electron scattering properties of point defects in carbon nanotubes (CNTs) are studied using DFT in conjunction with Green’s function based techniques. The latter are applied to evaluate the low-temperature, low-bias Landauer conductance spectrum from which mesoscopic transport properties such as the elastic mean free path and localization length of technologically relevant CNT sizes can be estimated from computationally tractable CNT models. Our calculations show that at CNT diameters pertinent to interconnect applications, the 555777 divacancy defect results in increased scattering and hence higher electrical resistance for electron transport near the Fermi level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Metabolic and morphological changes associated with excessive abdominal fat, after the introduction of Antiretroviral Therapy, increase the risk of cardiovascular disease in people living with HIV/AIDS(PLWHA). Accurate methods for body composition analysis are expensive and the use of anthropometric indices is an alternative. However the investigations about this subject in PLWHA are rare, making this research very important for clinical purpose and to advance scientific knowledge. The aim of this study is to correlate results of anthropometric indices of evaluation of body fat distribution with the results obtained by Dual-energy X-Ray Absorptiometry(DEXA) , in people living with HIV/AIDS. Methods. The sample was of 67 PLWHA(39 male and 28 female), aged 43.6+7.9 years. Body mass index, conicity index, waist/hip ratio, waist/height ratio and waist/thigh were calculated. Separated by sex, each index/ratio was plotted in a scatter chart with linear regression fit and their respective Pearson correlation coefficients. Analyses were performed using Prism statistical program and significance was set at 5%. Results: The waist/height ratio presented the highest correlation coefficient, for both male (r=0.80, p<0.001) and female (r=0.87, p <001), while the lowest were in the waist/thigh also for both: male group (r=0.58, p<0.001) and female group (r=0.03, p=0.86). The other indices also showed significant positive correlation with DEXA. Conclusion: Anthropometric indices, especially waist/height ratio may be a good alternative way to be used for evaluating the distribution of fat in the abdominal region of adults living with HIV/ADIS. © 2012 Segatto et al.; licensee BioMed Central Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Im Beitrag wird ein neuartiges Förderprinzip zur federnden Aufnahme und zum Transport von massenhaft anfallenden Paketstrukturen vorgestellt. Das Förderprinzip beruht auf einem flächigen Tragmittel in Form eines veränderbaren, elastischen Verbundes von kleinskaligen Fördermodulen. Das konzipierte Transportprinzip mit peristaltischen Eigenschaften soll entstehende Staus der Pakete schnell auflösen und eine dedizierte Steuerung von Teilmengen zulassen, um den erforderlichen Durchsatz innerhalb eines Materialflusssystems zu erreichen. Diese Lösung ermöglicht eine sinnvolle Verknüpfung von Wirkprinzipien der Schüttgut- und Stückgutförderung zur Aufnahme und Fortbewegung von Pakete als Schüttgut. Die Grundfunktionalität des Förderkonzepts wird durch die numerische Simulation auf Basis der Diskrete Elemente Methode sowie der Mehrkörpersimulation überprüft.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new set of dissipationless N-body simulations to examine the feasibility of creating bright ellipticals (following the Kormendy relation, hereafter KR) by hierarchically merging present-day early-type dwarf galaxies, and to study how the encounter parameters affect the location of the end product in the (mu(e))-R-e plane. We investigate the merging of one-component galaxies of both equal and different masses, the merging of two-component galaxy models to explore the effect of dark haloes on the final galaxy characteristics, and the merging of ultracompact dwarf galaxies. We find that the increase of (mu(e)) with R-e is attributable to an increase in the initial orbital energy. The merger remnants shift down in the (mu(e))-R-e plane and fail to reach the KR. Thus, the KR is not reproducible by mergers of dwarf early-type systems, rendering untenable the theory that present-day dwarfs are responsible for even a small fraction of the present-day ellipticals, unless a considerable amount of dissipation is invoked. However, we do find that present-day dwarfs can be formed by the merger of ultracompact dwarfs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: In paediatric clinical practice treatment is often adjusted in relation to body size, for example the calculation of pharmacological and dialysis dosages. In addition to use of body weight, for some purposes total body water (TBW) and surface area are estimated from anthropometry using equations developed several decades previously. Whether such equations remain valid in contemporary populations is not known. Methods: Total body water was measured using deuterium dilution in 672 subjects (265 infants aged < 1 year; 407 children and adolescents aged 1-19 years) during the period 1990-2003. TBW was predicted (a) using published equations, and (b) directly from data on age, sex, weight, and height. Results: Previously published equations, based on data obtained before 1970, significantly overestimated TBW, with average biases ranging from 4% to 11%. For all equations, the overestimation of TBW was greatest in infancy. New equations were generated. The best equation, incorporating log weight, log height, age, and sex, had a standard error of the estimate of 7.8%. Conclusions: Secular trends in the nutritional status of infants and children are altering the relation between age or weight and TBW. Equations developed in previous decades significantly overestimate TBW in all age groups, especially infancy; however, the relation between TBW and weight may continue to change. This scenario is predicted to apply more generally to many aspects of paediatric clinical practice in which dosages are calculated on the basis of anthropometric data collected in previous decades.