943 resultados para Method of linear transformations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes a learning-oriented interactive method for solving linear mixed integer problems of multicriteria optimization. The method increases the possibilities of the decision maker (DM) to describe his/her local preferences and at the same time it overcomes some computational difficulties, especially in problems of large dimension. The method is realized in an experimental decision support system for finding the solution of linear mixed integer multicriteria optimization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes a classification-based learning-oriented interactive method for solving linear multicriteria optimization problems. The method allows the decision makers describe their preferences with greater flexibility, accuracy and reliability. The method is realized in an experimental software system supporting the solution of multicriteria optimization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 97D40, 97M10, 97M40, 97N60, 97N80, 97R80

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper proposes the identification method of linear and non-linear chromatographic system. The non-linear isotherms and lumped mass transfer coefficients of chromatography separating sorbitol and mannitol are determined. And the theoretical elution curves calculated by non-linear chromatographic model are more accurate than those calculated by linear chromatographic model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta pesquisa foi realizada com a intenção de motivar o estudo da criptografia, mostrando que a matemática e a comunicação estão presentes em diversos momentos, tanto no passado quanto no presente. Este trabalho mostra a origem da criptoanálise e toda a sua evolução dando ênfase nos mecanismos de codificação e decodificação através de exemplos práticos. Além disso, alguns métodos criptográficos são destacados como a cifra de substituição monoalfabética, a cifra de Vigenère, a criptografia RSA que é o método mais conhecido de criptografia de chave pública, as cifras de Hill, o método das transformações lineares e o método de Rabin, devido a sua grande importância para a evolução de sistemas computacionais e assinaturas digitais entre outros. Por fim, mostra-se a importância e a necessidade dos recursos criptográficos nos dias de hoje, na tentativa de impedir que hackers e pessoas que fazem mau uso do conhecimento matemático possam causar danos a sociedade, seja por uma simples mensagem ou até mesmo através de situações mais imprudentes como as transações bancárias indevidas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study considers the solution of a class of linear systems related with the fractional Poisson equation (FPE) (−∇2)α/2φ=g(x,y) with nonhomogeneous boundary conditions on a bounded domain. A numerical approximation to FPE is derived using a matrix representation of the Laplacian to generate a linear system of equations with its matrix A raised to the fractional power α/2. The solution of the linear system then requires the action of the matrix function f(A)=A−α/2 on a vector b. For large, sparse, and symmetric positive definite matrices, the Lanczos approximation generates f(A)b≈β0Vmf(Tm)e1. This method works well when both the analytic grade of A with respect to b and the residual for the linear system are sufficiently small. Memory constraints often require restarting the Lanczos decomposition; however this is not straightforward in the context of matrix function approximation. In this paper, we use the idea of thick-restart and adaptive preconditioning for solving linear systems to improve convergence of the Lanczos approximation. We give an error bound for the new method and illustrate its role in solving FPE. Numerical results are provided to gauge the performance of the proposed method relative to exact analytic solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is devoted to the study of linear relationships in symmetric block ciphers. A block cipher is designed so that the ciphertext is produced as a nonlinear function of the plaintext and secret master key. However, linear relationships within the cipher can still exist if the texts and components of the cipher are manipulated in a number of ways, as shown in this thesis. There are four main contributions of this thesis. The first contribution is the extension of the applicability of integral attacks from word-based to bitbased block ciphers. Integral attacks exploit the linear relationship between texts at intermediate stages of encryption. This relationship can be used to recover subkey bits in a key recovery attack. In principle, integral attacks can be applied to bit-based block ciphers. However, specific tools to define the attack on these ciphers are not available. This problem is addressed in this thesis by introducing a refined set of notations to describe the attack. The bit patternbased integral attack is successfully demonstrated on reduced-round variants of the block ciphers Noekeon, Present and Serpent. The second contribution is the discovery of a very small system of equations that describe the LEX-AES stream cipher. LEX-AES is based heavily on the 128-bit-key (16-byte) Advanced Encryption Standard (AES) block cipher. In one instance, the system contains 21 equations and 17 unknown bytes. This is very close to the upper limit for an exhaustive key search, which is 16 bytes. One only needs to acquire 36 bytes of keystream to generate the equations. Therefore, the security of this cipher depends on the difficulty of solving this small system of equations. The third contribution is the proposal of an alternative method to measure diffusion in the linear transformation of Substitution-Permutation-Network (SPN) block ciphers. Currently, the branch number is widely used for this purpose. It is useful for estimating the possible success of differential and linear attacks on a particular SPN cipher. However, the measure does not give information on the number of input bits that are left unchanged by the transformation when producing the output bits. The new measure introduced in this thesis is intended to complement the current branch number technique. The measure is based on fixed points and simple linear relationships between the input and output words of the linear transformation. The measure represents the average fraction of input words to a linear diffusion transformation that are not effectively changed by the transformation. This measure is applied to the block ciphers AES, ARIA, Serpent and Present. It is shown that except for Serpent, the linear transformations used in the block ciphers examined do not behave as expected for a random linear transformation. The fourth contribution is the identification of linear paths in the nonlinear round function of the SMS4 block cipher. The SMS4 block cipher is used as a standard in the Chinese Wireless LAN Wired Authentication and Privacy Infrastructure (WAPI) and hence, the round function should exhibit a high level of nonlinearity. However, the findings in this thesis on the existence of linear relationships show that this is not the case. It is shown that in some exceptional cases, the first four rounds of SMS4 are effectively linear. In these cases, the effective number of rounds for SMS4 is reduced by four, from 32 to 28. The findings raise questions about the security provided by SMS4, and might provide clues on the existence of a flaw in the design of the cipher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a letter RauA proposed a new method for designing statefeedback controllers using eigenvalue sensitivity matrices. However, there appears to be a conceptual mistake in the procedure, or else it is unduly restricted in its applicability. In particular the equation — BR~lBTK = A/.I, in which K is a positive-definite symmetric matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used the density matrix renormalization group (DMRG) method to study the linear and nonlinear optical responses of first generation nitrogen based dendrimers with donor acceptor groups. We have employed Pariser–Parr–Pople Hamiltonian to model the interacting pi electrons in these systems. Within the DMRG method we have used an innovative scheme to target excited states with large transition dipole to the ground state. This method reproduces exact optical gaps and polarization in systems where exact diagonalization of the Hamiltonian is possible. We have used a correction vector method which tacitly takes into account the contribution of all excited states, to obtain the ground state polarizibility, first hyperpolarizibility, and two photon absorption cross sections. We find that the lowest optical excitations as well as the lowest excited triplet states are localized. It is interesting to note that the first hyperpolarizibility saturates more rapidly with system size compared to linear polarizibility unlike that of linear polyenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) approximate to 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) approximate to 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a quadratic C degrees interior penalty method for linear fourth order boundary value problems with essential and natural boundary conditions of the Cahn-Hilliard type. Both a priori and a posteriori error estimates are derived. The performance of the method is illustrated by numerical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let L be the algebra of all linear transformations on an n-dimensional vector space V over a field F and let A, B, ƐL. Let Ai+1 = AiB - BAi, i = 0, 1, 2,…, with A = Ao. Let fk (A, B; σ) = A2K+1 - σ1A2K-1 + σ2A2K-3 -… +(-1)KσKA1 where σ = (σ1, σ2,…, σK), σi belong to F and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that fn(A, B; σ) = 0 if σi is the ith elementary symmetric function of4- βs)2, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β4 are the characteristic roots of B. In this thesis we discuss relations involving fk(X, Y; σ) where X, Y Ɛ L and 1 ≤ k ˂ n. We show: 1. If F is infinite and if for each X Ɛ L there exists σ so that fk(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If F is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X1, X2…Xr belong to the radical of the algebra generated by A and B over F, where Xi has the form f2(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate L, if the characteristic of F does not divide n and if there exists σ so that fk(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of gk(w; σ) = w2K+1 - σ1w2K-1 + σ2w2K-3 - …. +(-1)K σKw over F. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231].