58 resultados para Methacrylates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photopolymerization of methyl,ethyl,butyl, and hexyl methacrylates in solution was studied. The effect of initial initiator and monomer concentrations on the time evolution of polymer concentration (M) over bar (n) and PDI was examined. The reversible chain addition and beta-scission, and primary radical termination steps were included in the mechanism along with the classical steps. The rate equations were derived using continuous distribution kinetics and solved numerically to fit the experimental data. The regressed rate coefficients compared well with the literature data. The model predicted the instantaneous increase in (M) over bar (n) and PDI to steady state values. The rate coefficients exhibited a linear increase with the size of alkyl chain of the alkyl methacrylates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miscibilities of some poly[aromatic (meth)acrylatels namely, poly(pheny1 acrylate) (PPA), poly(pheny1 methacrylate) (PPMA), poly(benzy1 acrylate) (PBA), and poly(benzy1 methacrylate) (PBMAY polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styreneacrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (B,j.’sw) ere calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBW SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miscibilities of some poly[aromatic (meth)crylate]s namely, poly(phenyl acrylate) (PPA, poly(phenyl methacrylate) (PPMA), poly(benzyl acrylate) (PBA), and poly(benzyl methacrylate) (PBMA)/polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styrene-acrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (Bij's) were calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBMA/SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prologue of this thesis (Chapter 1.0) gives a general overview on lactone based poly(ester) chemistry with a focus on advanced synthetic strategies for ring-opening polymerization, including the emerging field of organo catalysis. This section is followed by a presentation of the state-of the art regarding the two central fields of the thesis: (i) polyfunctional and branched poly(ester)s in Chapter 1.1 as well as (ii) the development of new poly(ester) based block copolymers with functional methacrylates (Chapter 1.2). Chapter 2 deals with the synthesis of new, non-linear poly(ester) structures. In Chapter 2.1, the synthesis of poly(lactide)-based multiarm stars, prepared via a grafting-from method, is described. The hyperbranched poly(ether)-poly(ol) poly(glycerol) is employed as a hydrophilic core molecule. The resulting star block copolymers exhibit potential as phase transfer agents and can stabilize hydrophilic dyes in a hydrophobic environment. In Chapter 2.2, this approach is expanded to poly(glycolide) multiarm star polymers. The problem of the poor solubility of linear poly(glycolide)s in common organic solvents combined with an improvement of the thermal properties has been approached by the reduction of the total chain length. In Chapter 2.3, the first successful synthesis of hyperbranched poly(lactide)s is presented. The ring-opening, multibranching copolymerization of lactide with the “inimer” 5HDON (a hydroxyl-functional lactone monomer) was carefully examined. Besides a precise molecular characterization involving the determination of the degree of branching, we were able to put forward a reaction model for the formation of branching during polymerization. Several innovative approaches to amphiphilic poly(ester)/poly(methacrylate)-based block copolymers are presented in the third part of the thesis (Chapter 3). Block copolymer build-up especially relies on the combination of ring-opening and living radical polymerization. Atom transfer radical polymerization has been successfully combined with lactide ring-opening, using a “double headed” initiator. This strategy allowed for the realization of poly(lactide)-block-poly(2-hydroxyethyl methacrylate) copolymers, which represent promising materials for tissue engineering scaffolds with anti-fouling properties (Chapter 3.1). The two-step/one-pot approach forgoes the use of protecting groups for HEMA by a careful selection of the reaction conditions. A series of potentially biocompatible and partially biodegradable homo- and block copolymers is described in Chapter 3.2. In order to create a block copolymer with a comparably strong hydrophilic character, a new acetal-protected glycerol monomethacrylate monomer (cis-1,3- benzylidene glycerol methacrylate/BGMA) was designed. The hydrophobic poly(BGMA) could be readily transformed into the hydrophilic and water-soluble poly(iso-glycerol methacrylate) (PIGMA) by mild acidic hydrolysis. Block copolymers of PIGMA and poly(lactide) exhibited interesting spherical aggregates in aqueous environment which could be significantly influenced by variation of the poly(lactide)s stereo-structure. In Chapter 3.3, pH-sensitive poly(ethylene glycol)-b-PBGMA copolymers are described. At slightly acidic pH values (pH 4/37°C), they decompose due to a polarity change of the BGMA block caused by progressing acetal cleavage. This stimuli-responsive behavior renders the system highly attractive for the targeted delivery of anti-cancer drugs. In Chapter 3.4, which was realized in cooperation, the concept of biocompatible, amphiphilic poly(lactide) based polymer drug conjugates, was pursued. This was accomplished in the form of fluorescently labeled poly(HPMA)-b-poly(lactide) copolymers. Fluorescence correlation spectroscopy (FCS) of partially biodegradable block copolymer aggregates exhibited fast cellular uptake by human cervix adenocarcinoma cells without showing toxic effects in the examined concentration range (Chapter 4.1). The current state of further projects which will be pursued in future studies is addressed in Chapter 4. This covers the synthesis of biocompatible star block copolymers (Chapter 4.2) and the development of new methacrylate monomers for biomedical applications (Chapters 4.3 and 4.4). Finally, the further investigation of hydroxyl-functional lactones and carbonates which are promising candidates for the synthesis of new hydrophilic linear or hyperbranched biopolymers, is addressed in Chapter 4.5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 °C. Maximum radial temperature recorded at the centre of the monolith was 62.3 °C, which was only 2.3 °C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5α-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-throughput plasmid DNA (pDNA) manufacture is obstructed predominantly by the performance of conventional stationary phases. For this reason, the search for new materials for fast chromatographic separation of pDNA is ongoing. A poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic material was synthesised via a thermal-free radical reaction, functionalised with different amino groups from urea, 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) and ammonia in order to investigate their plasmid adsorption capacities. Physical characterisation of the monolithic polymer showed a macroporous polymer having a unimodal pore size distribution pivoted at 600 nm. Chromatographic characterisation of the functionalised polymers using pUC19 plasmid isolated from E. coli DH5α-pUC19 showed a maximum plasmid adsorption capacity of 18.73 mg pDNA/mL with a dissociation constant (KD) of 0.11 mg/mL for GMA-EGDMA/DEAE-Cl polymer. Studies on ligand leaching and degradation demonstrated the stability of GMA-EGDMA/DEAE-Cl after the functionalised polymers were contacted with 1.0 M NaOH, which is a model reagent for most 'cleaning in place' (CIP) systems. However, it is the economic advantage of an adsorbent material that makes it so attractive for commercial purification purposes. Economic evaluation of the performance of the functionalised polymers on the grounds of polymer cost (PC)/mg pDNA retained endorsed the suitability of GMA-EGDMA/DEAE-Cl polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing numbers of preclinical and clinical studies are utilizing pDNA (plasmid DNA) as the vector. In addition, there has been a growing trend towards larger and larger doses of pDNA utilized in human trials. The growing demand on pDNA manufacture leads to pressure to make more in less time. A key intervention has been the use of monoliths as stationary phases in liquid chromatography. Monolithic stationary phases offer fast separation to pDNA owing to their large pore size, making pDNA in the size range from 100 nm to over 300 nm easily accessible. However, the convective transport mechanism of monoliths does not guarantee plasmid purity. The recovery of pure pDNA hinges on a proper balance in the properties of the adsorbent phase, the mobile phase and the feedstock. The effects of pH and ionic strength of binding buffer, temperature of feedstock, active group density and the pore size of the stationary phase were considered as avenues to improve the recovery and purity of pDNA using a methacrylate-based monolithic adsorbent and Escherichia coli DH5α-pUC19 clarified lysate as feedstock. pDNA recovery was found to be critically dependent on the pH and ionic strength of the mobile phase. Up to a maximum of approx. 92% recovery was obtained under optimum conditions of pH and ionic strength. Increasing the feedstock temperature to 80°C increased the purity of pDNA owing to the extra thermal stability associated with pDNA over contaminants such as proteins. Results from toxicological studies of the plasmid samples using endotoxin standard (E. coli 0.55:B5 lipopolysaccharide) show that endotoxin level decreases with increasing salt concentration. It was obvious that large quantities of pure pDNA can be obtained with minimal extra effort simply by optimizing process parameters and conditions for pDNA purification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactive extrusion for polymerization is an integrated polymer processing technology. A new semi-implicit iterative algorithm was proposed to deal with the complicated relationships among the chemical reaction, the macromolecular structure and the chemorheological property. Then the numerical computation expressions of the average molecular weight, the monomer conversion, and the initiator concentration were deduced, and the computer simulation of the reactive extrusion process for free radical polymerization was carried out, on basis of which reactive processing conditions can be optimized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate marginal leakage in class V restorations in primary teeth restored with amalgam, using three different techniques. Thirty maxillary anterior primary teeth, clinically sound and naturally exfoliated, were used. In group 1 (n = 10), two thin layers of a copal varnish (Cavitine) were applied. In group 2 (n = 10), Scotchbond Multi-Purpose Plus, a dual adhesive system, was used according to manufacturer instructions. In group 3 (n = 10), One-Step adhesive system in combination with a low-viscosity resin (Resinomer) were used according to manufacturer instructions. All samples were restored with a high-copper dental amalgam alloy (GS 80, SDI). After restoration, the samples were stored in normal saline at 37 degrees C for 72 h. The specimens were polished, thermocycled (500 cycles, 5 degrees and 55 degrees C, 30-s dwell time) and impermeabilized with fingernail polish to within 1.0 mm of the restoration margins. The teeth were then placed in 0.5% methylene blue for 4 h. Finally, the samples were sectioned and evaluated for marginal leakage. The Kruskal-Wallis test showed that the filled adhesive resin (group 3) had the least microleakage. There was no significant difference between groups 1 and 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Little data are available regarding the effect of heat-treatments on the dimensional stability of hard chairside reline resins. Purpose. The objective of this in vitro study was to evaluate whether a heat-treatment improves the dimensional stability of the reline resin Duraliner II and to compare the linear dimensional changes of this material with the heat-polymerized acrylic resin Lucitone 550. Material and methods. The materials were mixed according to the manufacturer's instructions and packed into a stainless steel split mold (50.0 mm diameter and 0.5 mm thickness) with reference points (A, B, C, and D). Duraliner II specimens were polymerized for 12 minutes in water at 37°C and bench cooled to room temperature before being removed from the mold. Twelve specimens were made and divided into 2 groups: group 1 specimens (n=6) were left untreated, and group 2 specimens (n=6) were submitted to a heat-treatment in a water bath at 55°C for 10 minutes and then bench cooled to room temperature. The 6 Lucitone specimens (control group) were polymerized in a water bath for 9 hours at 71°C. The specimens were removed after the mold reached the room temperature. A Nikon optical comparator was used to measure the distances between the reference points (AB and CD) on the stainless steel mold (baseline readings) and on the specimens to the nearest 0.001 mm. Measurements were made after processing and after the specimens had been stored in distilled water at 37°C for 8 different periods of time. Data were subjected to analysis of variance with repeated measures, followed by Tukey's multiple comparison test (P<.05). Results. All specimens exhibited shrinkage after processing (control, -0.41%; group 1, -0.26%; and group 2, -0.51%). Group 1 specimens showed greater shrinkage (-1.23%) than the control (-0.23%) and group 2 (-0.81%) specimens after 60 days of storage in water (P<.05). Conclusion. Within the limitations of this study, a significant improvement of the long-term dimensional stability of the Duraliner II reline resin was observed when the specimens were heat-treated. However, the shrinkage remained considerably higher than the denture base resin Lucitone 550. Copyright © 2002 by The Editorial Council of The Journal of Prosthetic Dentistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effectiveness of microwave irradiation sterilization on hard chairside reline resins. Materials and Methods: Specimens of three reline resins (Kooliner, Tokuso Rebase, and Ufi Gel Hard) were fabricated and subjected to ethylene oxide sterilization. The specimens were then individually inoculated (107 cfu/mL) with Tryptic Soy Broth media containing one of the tested microorganisms (C albicans, S aureus, B subtilis, and P aeruginosa). After 48 hours at 37°C, the samples were vortexed for 1 minute and allowed to stand for 9 minutes, followed by a short vortex to resuspend any organisms present. After inoculation, 40 specimens of each material were immersed in 200 mL of water and subjected to microwave irradiation at 650 W for 6 minutes. Forty non-irradiated specimens were used as positive controls. Replicate specimens (25 μL) of suspension were plated at dilutions of 10-3 to 10-6 on plates of selective media appropriate for each organism. All plates were incubated at 37°C for 48 hours. After incubation, colonies were counted, and the data were statistically analyzed by the Kruskal-Wallis test. Twelve specimens of each material were prepared for SEM. Results: All immersed specimens showed consistent sterilization of all the individual organisms after microwave irradiation. SEM examination indicated an alteration in cell morphology after microwave irradiation. Conclusion: Microwave sterilization for 6 minutes at 650 W proved to be effective for the sterilization of hard chairside reline resins.