957 resultados para Metamictization, brannerite, uranyl, titanium, mineral, Raman spectroscopy, U-O bond length


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-HO bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-HO bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral davidite-(La) (La,Ce)(Y,U,Fe2+)(Ti,Fe3+)20(O,OH)38 were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-HO bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of davidite-(La) are in harmony with those of the uranyl oxyhydroxides. The mineral davidite-(La) is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral holfertite CaxU2-xTi(O8-xOH4x)3H2O were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O stretching, bending. The mineral holfertite is metamict as is evidenced by order/disorder of the mineral. Unexpectedly the Raman spectrum of holfertite does not show any metamictization. The intensity of the UO stretching and bending modes show normal intensity and the bands are sharp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2- units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8\[O8](OH)5\[(SO4)4].25H2O; however Raman spectroscopy does not detect any hydroxyl units. Raman bands at 805 and 810 cm-1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm-1 are assigned to the (SO4)2- symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm-1 are assigned to the (SO4)2- 2 bending modes. The bands at 210 and 279 cm-1 are assigned to the doubly degenerate 2 bending vibration of the (UO2)2+ units. U-O bond lengths in uranyl and O-HO hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman and infrared spectroscopies were used to characterise two samples of triclinic ejkaite Na4[UO2(CO3)3] and its synthetic trigonal analogue. The v3 (UO2)2+ mode is not Raman active, whereas both the v3 and v1 (UO2)2+ modes are infrared active. U--O bond lengths in uranyls were calculated from the spectra obtained and compared with bond lengths derived from crystal structure analyses. From the higher number of bands related to the uranyl and carbonate vibrations, the presence of symmetrically distinct (UO2)2+ and (CO3)2- units in both structures is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral euxenite were analyzed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. The obsd. bands are attributed to the Ti[n.63743]O and (UO2)2+ stretching and bending vibrations, as well as lattice vibrations of rare-earth ions. The Raman bands of euxenite are in harmony with those of the uranyl oxyhydroxides. The mineral euxenite is metamict as is evidenced by the intensity of the U[n.63743]O stretching and bending modes, which are of lower intensity than expected, and with bands that are significantly broader.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of the uranyl containing mineral coconinoite, Fe2Al2(UO2)2(PO4)4(SO4)(OH)220H2O, are presented and compared with the minerals infrared spectra. Bands connected with (UO2)2+, (PO4)3- , (SO4)2-, (OH)- and H2O stretching and bending vibrations, are assigned. Approximate U-O bond lengths in uranyl, (UO2)2+, and O-H...O hydrogen bond lengths are calculated from the wavenumbers of the U-O stretching vibrations and (OH)- and H2O stretching vibrations, respectively, and compared with published data for similar natural and synthetic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular structure of the uranyl mineral rutherfordine has been investigated by the measurement of the NIR and Raman spectra and complemented with infrared spectra including their interpretation. The spectra of the rutherfordine show the presence of both water and hydroxyl units in the structure as evidenced by IR bands at 3562 and 3465 cm-1 (OH) and 3343, 3185 and 2980 cm-1 (H2O). Raman spectra show the presence of four sharp bands at 3511, 3460, 3329 and 3151 cm-1. Corresponding molecular water bending vibrations were only observed in both Raman and infrared spectra of one of two studied rutherfordine samples. The second rutherfordine sample studied contained only hydroxyl ions in the equatorial uranyl plane and did not contain any molecular water. The infrared spectra of the (CO3)2- units in the antisymmetric stretching region show complexity with three sets of carbonate bands observed. This combined with the observation of multiple bands in the (CO3)2- bending region in both the Raman and IR spectra suggests that both monodentate and bidentate (CO3)2- units may be present in the structure. This cannot be exactly proved and inferred from the spectra; however, it is in accordance with the X-ray crystallographic studies. Complexity is also observed in the IR spectra of (UO2)2+ antisymmetric stretching region and is attributed to non-identical UO bonds. U-O bond lengths were calculated using wavenumbers of the 3 and 1 (UO2)2+ and compared with data from X-ray single crystal structure analysis of rutherfordine. Existence of solid solution having a general formula (UO2)(CO3)1-x(OH)2x.yH2O ( x, y 0) is supported in the crystal structure of rutherfordine samples studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of jchymovite, (UO2)8(SO4)(OH)1413H2O, were studied, complemented with infrared spectra, and compared with published Raman and infrared spectra of uranopilite, [(UO2)6(SO4)O2(OH)6(H2O)6] 6H2O. Bands related to the stretching and bending vibrations of (UO2)2+, (SO4)2-, (OH)- and water molecules were assigned. U-O bond lengths in uranyl and O-HO hydrogen bond lengths were calculated from the Raman and infrared spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105C and 185 to 205C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O olivenite Cu2(AsO4)(OH) strashimirite Cu8(AsO4)4(OH)4.5H2O arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 C with the loss of water. At 125 C, Raman bands are observed at 858 cm-1 assigned to the 1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the 3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 C. At 275 C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectra of two well-defined types of koritnigite crystals from the Jchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. Observed Raman bands were attributed to the (AsO3OH)2- stretching and bending vibrations, stretching and bending vibrations of water molecules and hydroxyl ions. Non-interpreted Raman spectra of koritnigite from the RRUFF database, and published infrared spectra of cobaltkoritnigite were used for comparison. The O-H...O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X-ray single crystal refinement. The presence of (AsO3OH)2- units in the crystal structure of koritnigite was proved from the Raman spectra which supports the conclusions of the X-ray structure analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oriented single crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross-polarised spectra are identical. Band assignments were made with respect to bridging and non-bridging As-O bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Newberyite Mg(PO3OH)3H2O is a mineral found in caves such as from Moorba cave, Jurien Bay, Western Australia, the Skipton Lava tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of cave minerals. The intense sharp band at 982 cm-1 is assigned to the PO43- 1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm-1 are assigned to the PO43- 3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm-1 are attributed to the PO43- 4 bending modes. An intense Raman band for newberyite at 398 cm-1 with a shoulder band at 413 cm-1 is assigned to the PO43- 2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728 (3267 cm-1), 2.781 (3374cm-1), 2.868 (3479 cm-1), and 2.918 (3515 cm-1). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.