163 resultados para Metaheuristic
Resumo:
In the paper, the flow-shop scheduling problem with parallel machines at each stage (machine center) is studied. For each job its release and due date as well as a processing time for its each operation are given. The scheduling criterion consists of three parts: the total weighted earliness, the total weighted tardiness and the total weighted waiting time. The criterion takes into account the costs of storing semi-manufactured products in the course of production and ready-made products as well as penalties for not meeting the deadlines stated in the conditions of the contract with customer. To solve the problem, three constructive algorithms and three metaheuristics (based one Tabu Search and Simulated Annealing techniques) are developed and experimentally analyzed. All the proposed algorithms operate on the notion of so-called operation processing order, i.e. the order of operations on each machine. We show that the problem of schedule construction on the base of a given operation processing order can be reduced to the linear programming task. We also propose some approximation algorithm for schedule construction and show the conditions of its optimality.
Resumo:
Mixed integer programming and parallel-machine job shop scheduling are used to solve the sugarcane rail transport scheduling problem. Constructive heuristics and metaheuristics were developed to produce a more efficient scheduling system and so reduce operating costs. The solutions were tested on small and large size problems. High-quality solutions and improved CPU time are the result of developing new hybrid techniques which consist of different ways of integrating simulated annealing and Tabu search techniques.
Resumo:
The multilevel paradigm as applied to combinatorial optimisation problems is a simple one, which at its most basic involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial solution is found, usually at the coarsest level, and then iteratively refined at each level, coarsest to finest, typically by using some kind of heuristic optimisation algorithm (either a problem-specific local search scheme or a metaheuristic). Solution extension (or projection) operators can transfer the solution from one level to another. As a general solution strategy, the multilevel paradigm has been in use for many years and has been applied to many problem areas (for example multigrid techniques can be viewed as a prime example of the paradigm). Overview papers such as [] attest to its efficacy. However, with the exception of the graph partitioning problem, multilevel techniques have not been widely applied to combinatorial problems and in this chapter we discuss recent developments. In this chapter we survey the use of multilevel combinatorial techniques and consider their ability to boost the performance of (meta)heuristic optimisation algorithms.
Resumo:
This paper describes the development of a novel metaheuristic that combines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the University course timetabling problem. This well-known timetabling problem assigns lectures to specific numbers of timeslots and rooms maximizing the overall quality of the timetable while taking various constraints into account. EM is a population-based stochastic global optimization algorithm that is based on the theory of physics, simulating attraction and repulsion of sample points in moving toward optimality. GD is a local search procedure that allows worse solutions to be accepted based on some given upper boundary or ‘level’. In this paper, the dynamic force calculated from the attraction-repulsion mechanism is used as a decreasing rate to update the ‘level’ within the search process. The proposed method has been applied to a range of benchmark university course timetabling test problems from the literature. Moreover, the viability of the method has been tested by comparing its results with other reported results from the literature, demonstrating that the method is able to produce improved solutions to those currently published. We believe this is due to the combination of both approaches and the ability of the resultant algorithm to converge all solutions at every search process.
Resumo:
Os problemas de visibilidade têm diversas aplicações a situações reais. Entre os mais conhecidos, e exaustivamente estudados, estão os que envolvem os conceitos de vigilância e ocultação em estruturas geométricas (problemas de vigilância e ocultação). Neste trabalho são estudados problemas de visibilidade em estruturas geométricas conhecidas como polígonos, uma vez que estes podem representar, de forma apropriada, muitos dos objectos reais e são de fácil manipulação computacional. O objectivo dos problemas de vigilância é a determinação do número mínimo de posições para a colocação de dispositivos num dado polígono, de modo a que estes dispositivos consigam “ver” a totalidade do polígono. Por outro lado, o objectivo dos problemas de ocultação é a determinação do número máximo de posições num dado polígono, de modo a que quaisquer duas posições não se consigam “ver”. Infelizmente, a maior parte dos problemas de visibilidade em polígonos são NP-difíceis, o que dá origem a duas linhas de investigação: o desenvolvimento de algoritmos que estabelecem soluções aproximadas e a determinação de soluções exactas para classes especiais de polígonos. Atendendo a estas duas linhas de investigação, o trabalho é dividido em duas partes. Na primeira parte são propostos algoritmos aproximados, baseados essencialmente em metaheurísticas e metaheurísticas híbridas, para resolver alguns problemas de visibilidade, tanto em polígonos arbitrários como ortogonais. Os problemas estudados são os seguintes: “Maximum Hidden Vertex Set problem”, “Minimum Vertex Guard Set problem”, “Minimum Vertex Floodlight Set problem” e “Minimum Vertex k-Modem Set problem”. São também desenvolvidos métodos que permitem determinar a razão de aproximação dos algoritmos propostos. Para cada problema são implementados os algoritmos apresentados e é realizado um estudo estatístico para estabelecer qual o algoritmo que obtém as melhores soluções num tempo razoável. Este estudo permite concluir que as metaheurísticas híbridas são, em geral, as melhores estratégias para resolver os problemas de visibilidade estudados. Na segunda parte desta dissertação são abordados os problemas “Minimum Vertex Guard Set”, “Maximum Hidden Set” e “Maximum Hidden Vertex Set”, onde são identificadas e estudadas algumas classes de polígonos para as quais são determinadas soluções exactas e/ou limites combinatórios.
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.
Resumo:
In this letter, a genetic algorithm (GA) is applied to solve - the static and multistage transmission expansion planning (TEP) problem. The characteristics of the proposed GA to solve the TEP problem are presented. Results using some known systems show that the proposed GA solves a smaller number of linear programming problems in order to find the optimal solutions and obtains a better solution for the multistage TEP problem.
Resumo:
This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.
Resumo:
Mass spectrometry (MS) data provide a promising strategy for biomarker discovery. For this purpose, the detection of relevant peakbins in MS data is currently under intense research. Data from mass spectrometry are challenging to analyze because of their high dimensionality and the generally low number of samples available. To tackle this problem, the scientific community is becoming increasingly interested in applying feature subset selection techniques based on specialized machine learning algorithms. In this paper, we present a performance comparison of some metaheuristics: best first (BF), genetic algorithm (GA), scatter search (SS) and variable neighborhood search (VNS). Up to now, all the algorithms, except for GA, have been first applied to detect relevant peakbins in MS data. All these metaheuristic searches are embedded in two different filter and wrapper schemes coupled with Naive Bayes and SVM classifiers.
Resumo:
It is known that the Minimum Weight Triangulation problem is NP-hard. Also the complexity of the Minimum Weight Pseudo-Triangulation problem is unknown, yet it is suspected to be also NP-hard. Therefore we focused on the development of approximate algorithms to find high quality triangulations and pseudo-triangulations of minimum weight. In this work we propose two metaheuristics to solve these problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA). For the experimental study we have created a set of instances for MWT and MWPT problems, since no reference to benchmarks for these problems were found in the literature. Through experimental evaluation, we assess the applicability of the ACO and SA metaheuristics for MWT and MWPT problems. These results are compared with those obtained from the application of deterministic algorithms for the same problems (Delaunay Triangulation for MWT and a Greedy algorithm respectively for MWT and MWPT).