884 resultados para Mental Time-travel
Resumo:
In this paper we apply the concept of mental time travel to introduce the basic features of full-blown conscious experiences (encapsulation in mental models and recollection). We discuss the perspective that Lamme`s `Level 3` experiences can be considered as part of the scope of phenomenological consciousness, in relation to which we emphasize the necessity to consider the different degrees of consciousness and how a particular situation compares to the conscious experiences present in resting states of wakefulness.
Resumo:
Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel.
Resumo:
Mechanisms that produce behavior which increase future survival chances provide an adaptive advantage. The flexibility of human behavior is at least partly the result of one such mechanism, our ability to travel mentally in time and entertain potential future scenarios. We can study mental time travel in children using language. Current results suggest that key developments occur between the ages of three to five. However, linguistic performance can be misleading as language itself is developing. We therefore advocate the use of methodologies that focus on future-oriented action. Mental time travel required profound changes in humans' motivational system, so that current behavior could be directed to secure not just present, but individually anticipated future needs. Such behavior should be distinguishable from behavior based on current drives, or on other mechanisms. We propose an experimental paradigm that provides subjects with an opportunity to act now to satisfy a need not currently experienced. This approach may be used to assess mental time travel in nonhuman animals. We conclude by describing a preliminary study employing an adaptation of this paradigm for children. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Using the concept of time travel as a contextual and narrative tool, the author explores themes of love, loss and growth after trauma. Reflections relate primarily to the experience of conducting the qualitative research method of autoethnography. Opening with consideration of existing work (Yoga and Loss: An Autoethnographical Exploration of Grief, Mind, and Body), discussion moves on to academic thought on mental time travel, and personal transformation, culminating in the construction of a new memory combining past, present, and future.
Resumo:
Som componente do jogo “Musikinésia (http://www.loa.sead.ufscar.br/musikinesia.php)” desenvolvido pela equipe do Laboratório de Objetos de Aprendizagem da Universidade Federal de São Carlos (LOA/UFSCar).
Resumo:
As the number of solutions to the Einstein equations with realistic matter sources that admit closed time-like curves (CTC's) has grown drastically, it has provoked some authors [10] to call for a physical interpretation of these seemingly exotic curves that could possibly allow for causality violations. A first step in drafting a physical interpretation would be to understand how CTC's are created because the recent work of [16] has suggested that, to follow a CTC, observers must counter-rotate with the rotating matter, contrary to the currently accepted explanation that it is due to inertial frame dragging that CTC's are created. The exact link between inertialframe dragging and CTC's is investigated by simulating particle geodesics and the precession of gyroscopes along CTC's and backward in time oriented circular orbits in the van Stockum metric, known to have CTC's that could be traversal, so the van Stockum cylinder could be exploited as a time machine. This study of gyroscopeprecession, in the van Stockum metric, supports the theory that CTC's are produced by inertial frame dragging due to rotating spacetime metrics.
Resumo:
Abstract concepts like numbers or time are thought to be represented in the more concrete domain of space and the sensorimotor system. For example, thinking of past or future events has a physical manifestation in backward or forward body sway, respectively. In the present study, we investigated the reverse effect: can passive whole-body motion influence the processing of temporal information? Participants were asked to categorize verbal stimuli to the concepts future or past while they were displaced forward and backward (Experiment 1), or upward and downward (Experiment 2). The results showed that future related verbal stimuli were categorized faster during forward as compared to backward motion. This finding supports the view that temporal events are represented along a mental time line and that the sensorimotor system is linked to that representation. We showed that body motion is not just an epiphenomenon of temporal thoughts. Passive whole-body motion can influence higher-order temporal cognition.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Postprint
Resumo:
Humans are primates. We have evolved from common ancestors and the evolution of the human body is becoming increasingly clear as the archeological record expands. But for most people the gap between humans and animals lies in the mind, not in the body. And minds do not fossilise. To reconstruct the evolution of mind, scholars have thus increasingly looked to our closest relatives for clues. Here I discuss four ways in which the study of primates may inform such reconstruction: fact-finding, phylogenetic reconstruction, analogy, and regression models. Knowledge about primates can help us bridge the gap. Extinction of our closest relatives, on the other hand, would not only deplete that source of information but also increase the apparent differences between animal and human minds. It is likely that we have a long history of displacing closely related species, including the other hominids, leading us to appear ever more unique.