968 resultados para Melt-quench
Resumo:
The atomic scale structure of sodium borophosphates made by the sol-gel method is compared to those made by the melt-quench method. It is found that although the sol-gel generated materials have a higher tendency towards crystallization, they nevertheless show a qualitatively similar crystallization trend with composition to their melt-quench analogues; the progressive introduction of boron oxide into the phosphate network initially inhibits then promotes crystallization. At the composition associated with the most stable amorphous sodium borophosphate (20 mol% boron oxide), it is found that the atomic scale structure of the sol-gel synthesized network glass is almost identical to that of the corresponding melt-quenched one.
Resumo:
High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.
Resumo:
Photocatalytic degradation of estriol (E3) in an aqueous medium was investigated in the presence of TiO2 microcrystallized glass plates. To begin with, transparent glasses associated with the composition 0.4BaO-0.4TiO(2)-B2O3 (BTBO) were fabricated by the conventional melt-quench technique and subsequently subjected to controlled heat treatment at an appropriate temperature to grow anatase TiO2 microcrystals in the glass matrix. The fabricated samples were subjected to differential scanning calorimetry. X-ray diffraction and scanning electron microscopy to obtain thermal, structural and microstructural details. The photocatalytic activity of glass samples for estriol degradation was monitored by fluorescence spectroscopy. The limit of detection for estriol using fluorescence spectroscopy was analyzed. The results showed that microcrystallized TiO2 glass composites have more photocatalytic activity than as quenched glass. The degradation rate coefficient of microcrystallized TiO2 glass composite (334.54 min(-1) m(-2)) was found to be ten times larger than that of the as-quenched BTBO glasses (37.74 min(-1) m(-2)) implying that the anatase phase of TiO2 in BTBO glasses was responsible for high photocatalytic activity of estriol degradation. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The Er3+/Yb3+ co-doped glasses with compositions of xBi(2)O(3)-(65-x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O (where x = 0, 2.5, 5, 7.5 and 10 mol%) were prepared using the normal melt quench technique. The optical absorption spectra of the glasses were recorded in the wavelength range 300-1700 nm. The effect of Bi2O3 content on the thermal stability and absorption spectra of glasses was investigated. In addition, the Judd-Ofelt parameters and oscillator strengths were calculated by employing Judd-Ofelt theory. It was observed that the positions of the fundamental absorption edge and cut-off wavelength shifted towards red as the content of Bi2O3 increased. However, there were no red shifts found both in the peak wavelength and in the center of mass wavelength of all absorption bands with Bi2O3 content increasing. The results of Judd-Ofelt theory analysis showed that Judd-Ofelt parameters Omega(t), (t = 2, 4, 6) changed sharply when Bi2O3 concentration exceeded 5 mol%. The variation trends of experimental oscillator strength were similar with those of Judd-Ofelt parameters as function of Bi2O3 concentrations. Moreover, differential scanning calorimetry experiments showed that the increases of Bi2O3 content weakened the network structure and then lowered the thermal stability of the glasses. The spontaneous emission probability A(rad), branching ratio beta and the radiative lifetime tau(rad) were also calculated and analyzed. The stimulated emission cross-section of Er3+ was calculated according to the McCumber theory. It was found that the stimulated emission cross-section of Er3+ was monotonically increases with Bi2O3 content increasing. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Glasses with compositions 50Bi
Resumo:
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2
Resumo:
Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.
Resumo:
We have demonstrated the successful production of titanium phosphate glass microspheres in the size range of ~10-200 µm using an inexpensive, efficient, easily scalable process and assessed their use in bone tissue engineering applications. Glasses of the following compositions were prepared by melt-quench techniques: 0.5P2O5-0.4CaO-(0.1 - x)Na2O-xTiO2, where x = 0.03, 0.05 and 0.07 mol fraction (denoted as Ti3, Ti5 and Ti7 respectively). Several characterization studies such as differential thermal analysis, degradation (performed using a novel time lapse imaging technique) and pH and ion release measurements revealed significant densification of the glass structure with increased incorporation of TiO2 in the glass from 3 to 5 mol.%, although further TiO2 incorporation up to 7 mol.% did not affect the glass structure to the same extent. Cell culture studies performed using MG63 cells over a 7-day period clearly showed the ability of the microspheres to provide a stable surface for cell attachment, growth and proliferation. Taken together, the results confirm that 5 mol.% TiO2 glass microspheres, on account of their relative ease of preparation and favourable biocompatibility, are worthy candidates for use as substrate materials in bone tissue engineering applications.
Resumo:
Melt quenched silicate glasses containing calcium, phosphorus and alkali metals have the ability to promote bone regeneration and to fuse to living bone. Of these glasses 45S5 Bioglass® is the most widely used being sold in over 35 countries as a bone graft product for medical and dental applications; particulate 45S5 is also incorporated into toothpastes to help remineralize the surface of teeth. Recently it has been suggested that adding titanium dioxide can increase the bioactivity of these materials. This work investigates the structural consequences of incorporating 4 mol% TiO2 into Bioglass® using isotopic substitution (of the Ti) applied to neutron diffraction and X-ray Absorption Near Edge Structure (XANES). We present the first isotopic substitution data applied to melt quench derived Bioglass or its derivatives. Results show that titanium is on average surrounded by 5.2(1) nearest neighbor oxygen atoms. This implies an upper limit of 40% four-fold coordinated titanium and shows that the network connectivity is reduced from 2.11 to 1.97 for small quantities of titanium. Titanium XANES micro-fluorescence confirms the titanium environment is homogenous on the micron length scale within these glasses. Solid state magic angle spinning (MAS) NMR confirms the network connectivity model proposed. Furthermore, the results show the intermediate range order containing Na-O, Ca-O, O-P-O and O-Si-O correlations are unaffected by the addition of small quantities of TiO2 into these systems.
Resumo:
A laboratory scale twin screw extruder has been interfaced with a near infrared (NIR) spectrometer via a fibre optic link so that NIR spectra can be collected continuously during the small scale experimental melt state processing of polymeric materials. This system can be used to investigate melt state processes such as reactive extrusion, in real time, in order to explore the kinetics and mechanism of the reaction. A further advantage of the system is that it has the capability to measure apparent viscosity simultaneously which gives important additional information about molecular weight changes and polymer degradation during processing. The system was used to study the melt processing of a nanocomposite consisting of a thermoplastic polyurethane and an organically modified layered silicate.
Resumo:
Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry
Resumo:
Melt electrospinning is relatively under-investigated compared to solution electrospinning but provides opportunities in numerous areas, in which solvent accumulation or toxicity are a concern. These applications are diverse, and provide a broad set of challenges to researchers involved in electrospinning. In this context, melt electrospinning provides an alternative approach that bypasses some challenges to solution electronspinning, while bringing new issues to the forefront, such as the thermal stability of polymers. This Focus Review describes the literature on melt electrospinning, as well as highlighting areas where both melt and solution are combined, and potentially merge together in the future.
Resumo:
A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species