19 resultados para Melanins
Resumo:
Melanins have been associated with the development of melanoma and its resistance to photodynamic therapy (PDT). Singlet molecular oxygen (102), which is produced by ultraviolet A solar radiation and the PDT system, is also involved. Here, we investigated the effects that these factors have on DNA damage and repair. Our results show that both types of melanin (eumelanin and pheomelanin) lead to DNA breakage in the absence of light irradiation and that eumelanin is more harmful than pheomelanin. Interestingly, melanins were found to bind to the minor grooves of DNA, guaranteeing close proximity to DNA and potentially causing the observed high levels of strand breaks. We also show that the interaction of melanins with DNA can impair the access of repair enzymes to lesions, contributing to the perpetuation of DNA damage. Moreover, we found that after melanins interact with 102, they exhibit a lower ability to induce DNA breakage; we propose that these effects are due to modifications of their structure. Together, our data highlight the different modes of action of the two types of melanin. Our results may have profound implications for cellular redox homeostasis, under conditions of induced melanin synthesis and irradiation with solar light. These results may also be applied to the development of protocols to sensitize melanoma cells to PDT. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Photopyroelectric spectroscopy (PPE) was used to study the thermal and optical properties of melanins. The photopyroelectric intensity signal and its phase were independently measured as a function of wavelength and chopping frequency for a given wavelength in the saturation part of the PPE spectrum. Equations for both the intensity and the phase of the PPE signal were used to fit the experimental results. From these fits we obtained for the first time, with great accuracy, the thermal diffusivity coefficient, the thermal conductivity, and the specific heat of the samples, as well as a value for the condensed phase optical gap, which we found to be 1.70 eV. (c) 2005 American Institute of Physics.
Resumo:
We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ultraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.
Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.
Resumo:
BACKGROUND: The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. RESULTS: We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. CONCLUSIONS: We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.
Resumo:
We studied an eye from a 73-year-old man with a sporadic type of retinal cone degeneration and choroidal melanoma. Histologic and ultrastructural studies of the nasal retina unaffected by the choroidal melanoma showed alterations at the outer retina predominantly involving the photoreceptors and retinal pigment epithelium. A wide spectrum of pathologic changes were observed, ranging from near normal retina showing only photoreceptor outer segment disease (distortion and kinking) to grossly pathologic regions where photoreceptor cell bodies were sparse and their outer segments absent. The retinal pigment epithelium in minimally affected regions of the retina showed an increased proportion of the melanin complement of the cell within complex granules. In severe disease, many cells showed only giant complex granules with no free melanin. Retinal pigment epithelial cell migration and relocation around blood vessels was also noted in severe disease.
Resumo:
Melanoma antigen recognized by T cells 1 (MART-1) is a melanoma-specific antigen, which has been thoroughly studied in the context of immunotherapy against malignant melanoma and which is found only in the pigment cell lineage. However, its exact function and involvement in pigmentation is not clearly understood. Melanoma antigen recognized by T cells 1 has been shown to interact with the melanosomal proteins Pmel17 and OA1. To understand the function of MART-1 in pigmentation, we developed a new knockout mouse model. Mice deficient in MART-1 are viable, but loss of MART-1 leads to a coat color phenotype, with a reduction in total melanin content of the skin and hair. Lack of MART-1 did not affect localization of melanocyte-specific proteins nor maturation of Pmel17. Melanosomes of hair follicle melanocytes in MART-1 knockout mice displayed morphological abnormalities, which were exclusive to stage III and IV melanosomes. In conclusion, our results suggest that MART-1 is a pigmentation gene that is required for melanosome biogenesis and/or maintenance.
Resumo:
Oxidative stress, determined by the balance between the production of damaging reactive oxygen species (ROS) and antioxidant defences, is hypothesized to play an important role in shaping the cost of reproduction and life history trade-offs. To test this hypothesis, we manipulated reproductive effort in 94 breeding pairs of tawny owls (Strix aluco) to investigate the sex- and melanism-specific effects on markers of oxidative stress in red blood cells (RBCs). This colour polymorphic bird species shows sex-specific division of labour and melanism-specific history strategies. Brood sizes at hatching were experimentally enlarged or reduced to increase or decrease reproductive effort, respectively. We obtained an integrative measure of the oxidative balance by measuring ROS production by RBCs, intracellular antioxidant glutathione levels and membrane resistance to ROS. We found that light melanic males (the sex undertaking offspring food provisioning) produced more ROS than darker conspecifics, but only when rearing an enlarged brood. In both sexes, light melanic individuals had also a larger pool of intracellular antioxidant glutathione than darker owls under relaxed reproductive conditions (i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). Finally, resistance to oxidative stress was differently affected by the brood size manipulation experiment in males and females independently of their plumage coloration. Altogether, our results support the hypothesis that reproductive effort can alter the oxidative balance in a sex- and colour-specific way. This further emphasizes the close link between melanin-based coloration and life history strategies.
Resumo:
We report an experimental and theoretical study of magnetic properties of synthetic eumelanin. The magnetization curves are determined by using both a vibrating sample magnetometer and a superconducting quantum interferometer device in an extended range of magnetic fields ranging from -10 kOe to 10 kOe at different temperatures. We find that the eumelanin magnetization can be qualitatively explained in terms of a simple model of dipolar spheres with an intrinsic magnetic moment. The latter one is experimentally measured by using X-band electron paramagnetic resonance. Our findings indicate that synthetic melanins are superparamagnetic.
Resumo:
Melanins are pigments of high molecular weight formed by oxidative polymerization of phenolic or indolic compounds. A number of fungi, including Aspergillus nidulans, produce pigments related or identical to melanin, which are located on cell walls or exist as extracellular polymers. The aim of the present study was to assess the antioxidant activity of synthetic melanin and of the pigment extracted from the mycelium and culture medium after growth of the highly melanized strain (MEL1) from A. nidulans. The ability of the melanin pigment to scavenge the oxidants HOCl and H2O2 was evaluated by inhibition of the oxidation of 5-thio-2-nitrobenzoic acid (TNB) using several melanin concentrations. The results showed that the pigment of the MEL1 strain competes with TNB for H2O2 and HOCl, inhibiting TNB oxidation in a concentration-dependent manner. For the HOCl oxidant, this inhibition was comparable to that of synthetic melanin, whose IC50 values were quite close for both pigments. Thus, our results suggest that the melanin from A. nidulans is a potential HOCl scavenger and may be considered a promising material for the cosmetic industry for the formulation of creams that protect the skin against possible oxidative damage.
Resumo:
Melanins are dark, insoluble pigments that are resistant to concentrated acids and bleaching by oxidising agents. Phytomelanin (or phytomelan) is present in the seed coat of some Asparagales and in the fruits of some Compositae. In Compositae fruits, melanin is deposited in the schizogenous spaces between the hypodermis and underlying fibrous layer. Phytomelanin in Compositae is poorly understood, and there are only speculations regarding the cells that produce the pigment and the cellular processes involved in the secretion and polymerisation of phytomelanin. This report describes the cellular processes involved in the secretion of phytomelanin in the pericarp of Praxelis diffusa, a species with a structure typical of the family. The ovaries and fruits at different stages were fixed and processed according to the standard methods of studies of light microscopy and transmission electron microscopy. Hypodermal cells have abundant rough endoplasmic reticulum and mitochondria, and the nuclei have chromatin that is less dense than other cells. These characteristics are typical of cells that synthesise protein/amino acids and suggest no carbohydrate secretion. The fibres, however, have a dense cytoplasm rich in the Golgi bodies that are associated with vesicles and smooth endoplasmic reticulum, common characteristics of carbohydrate secretory cells. Our results indicate that the hypodermal cells are not responsible for the secretion of phytomelanin, as previously described in the literature; in contrast, this function is assigned to the adjacent fibres, which have an organisation typical of cells that secrete carbohydrates. © 2012 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)