1000 resultados para Mechanosensitive Channel Mscl


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to sense mechanical force is vital to all organisms to interact with and respond to stimuli in their environment. Mechanosensation is critical to many physiological functions such as the senses of hearing and touch in animals, gravitropism in plants and osmoregulation in bacteria. Of these processes, the best understood at the molecular level involve bacterial mechanosensitive channels. Under hypo-osmotic stress, bacteria are able to alleviate turgor pressure through mechanosensitive channels that gate directly in response to tension in the membrane lipid bilayer. A key participant in this response is the mechanosensitive channel of large conductance (MscL), a non-selective channel with a high conductance of ~3 nS that gates at tensions close to the membrane lytic tension.

It has been appreciated since the original discovery by C. Kung that the small subunit size (~130 to 160 residues) and the high conductance necessitate that MscL forms a homo-oligomeric channel. Over the past 20 years of study, the proposed oligomeric state of MscL has ranged from monomer to hexamer. Oligomeric state has been shown to vary between MscL homologues and is influenced by lipid/detergent environment. In this thesis, we report the creation of a chimera library to systematically survey the correlation between MscL sequence and oligomeric state to identify the sequence determinants of oligomeric state. Our results demonstrate that although there is no combination of sequences uniquely associated with a given oligomeric state (or mixture of oligomeric states), there are significant correlations. In the quest to characterize the oligomeric state of MscL, an exciting discovery was made about the dynamic nature of the MscL complex. We found that in detergent solution, under mild heating conditions (37 °C – 60 °C), subunits of MscL can exchange between complexes, and the dynamics of this process are sensitive to the protein sequence.

Extensive efforts were made to produce high diffraction quality crystals of MscL for the determination of a high resolution X-ray crystal structure of a full length channel. The surface entropy reduction strategy was applied to the design of S. aureus MscL variants and while the strategy appears to have improved the crystallizability of S. aureus MscL, unfortunately the diffraction qualities of these crystals were not significantly improved. MscL chimeras were also screened for crystallization in various solubilization detergents, but also failed to yield high quality crystals.

MscL is a fascinating protein and continues to serve as a model system for the study of the structural and functional properties of mechanosensitive channels. Further characterization of the MscL chimera library will offer more insight into the characteristics of the channel. Of particular interest are the functional characterization of the chimeras and the exploration of the physiological relevance of intercomplex subunit exchange.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RKKEE cluster of charged residues located within the cytoplasmic helix of the bacterial mechanosensitive channel, MscL, is essential for the channel function. The structure of MscL determined by x-ray crystallography and electron paramagnetic resonance spectroscopy has revealed discrepancies toward the C-terminus suggesting that the structure of the C-terminal helical bundle differs depending on the pH of the cytoplasm. In this study we examined the effect of pH as well as charge reversal and residue substitution within the RKKEE cluster on the mechanosensitivity of Escherichia coli MscL reconstituted into liposomes using the patch-clamp technique. Protonation of either positively or negatively charged residues within the cluster, achieved by changing the experimental pH or residue substitution within the RKKEE cluster, significantly increased the free energy of activation for the MscL channel due to an increase in activation pressure. Our data suggest that the orientation of the C-terminal helices relative to the aqueous medium is pH dependent, indicating that the RKKEE cluster functions as a proton sensor by adjusting the channel sensitivity to membrane tension in a pH-dependent fashion. A possible implication of our results for the physiology of bacterial cells is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd3+ stop ions from the membrane bilayer and thus remove the MscL channel block.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parabens are alkyl esters of p-hydroxybenzoic acid used as preservatives in a wide range of food, pharmaceutical, and cosmetic products (Soni et al. Food Chem. Toxicol. 39:513-532, 2001). Despite their common use for over 50 years, their mechanism of action is still unclear. In this study we examined the effects of ethyl and propyl paraben, on gating of the E. coli mechanosensitive channel of large conductance (MscL) reconstituted into azolectin liposomes. We found that propyl and ethyl paraben spontaneously activate MscL. Moreover, the addition of propyl paraben caused an increase in MscL activity and the lowering Of P-1/2, the pressure at which the MscL was opened 50% of the time, the AGO, the free energy required to open the MscL, and the parameter a, which describes the channel sensitivity to pressure. In addition, in silico studies showed that propyl paraben binds to the channel gate of the MscL. The mechanosensitive channel of small conductance was also found to be spontaneously activated by parabens. In summary, our study indicates that one of the previously unidentified mechanisms of action of parabens as antimicrobial agents is via an interaction with the mechanosensitive channels to upset the osmotic gradients in bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Escherichia coli is one of the best studied living organisms and a model system for many biophysical investigations. Despite countless discoveries of the details of its physiology, we still lack a holistic understanding of how these bacteria react to changes in their environment. One of the most important examples is their response to osmotic shock. One of the mechanistic elements protecting cell integrity upon exposure to sudden changes of osmolarity is the presence of mechanosensitive channels in the cell membrane. These channels are believed to act as tension release valves protecting the inner membrane from rupturing. This thesis presents an experimental study of various aspects of mechanosensation in bacteria. We examine cell survival after osmotic shock and how the number of MscL (Mechanosensitive channel of Large conductance) channels expressed in a cell influences its physiology. We developed an assay that allows real-time monitoring of the rate of the osmotic challenge and direct observation of cell morphology during and after the exposure to osmolarity change. The work described in this thesis introduces tools that can be used to quantitatively determine at the single-cell level the number of expressed proteins (in this case MscL channels) as a function of, e.g., growth conditions. The improvement in our quantitative description of mechanosensation in bacteria allows us to address many, so far unsolved, problems, like the minimal number of channels needed for survival, and can begin to paint a clearer picture of why there are so many distinct types of mechanosensitive channels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding how transcriptional regulatory sequence maps to regulatory function remains a difficult problem in regulatory biology. Given a particular DNA sequence for a bacterial promoter region, we would like to be able to say which transcription factors bind there, how strongly they bind, and whether they interact with each other and/or RNA polymerase, with the ultimate objective of integrating knowledge of these parameters into a prediction of gene expression levels. The theoretical framework of statistical thermodynamics provides a useful framework for doing so, enabling us to predict how gene expression levels depend on transcription factor binding energies and concentrations. We used thermodynamic models, coupled with models of the sequence-dependent binding energies of transcription factors and RNAP, to construct a genotype to phenotype map for the level of repression exhibited by the lac promoter, and tested it experimentally using a set of promoter variants from E. coli strains isolated from different natural environments. For this work, we sought to ``reverse engineer'' naturally occurring promoter sequences to understand how variations in promoter sequence affects gene expression. The natural inverse of this approach is to ``forward engineer'' promoter sequences to obtain targeted levels of gene expression. We used a high precision model of RNAP-DNA sequence dependent binding energy, coupled with a thermodynamic model relating binding energy to gene expression, to predictively design and verify a suite of synthetic E. coli promoters whose expression varied over nearly three orders of magnitude.

However, although thermodynamic models enable predictions of mean levels of gene expression, it has become evident that cell-to-cell variability or ``noise'' in gene expression can also play a biologically important role. In order to address this aspect of gene regulation, we developed models based on the chemical master equation framework and used them to explore the noise properties of a number of common E. coli regulatory motifs; these properties included the dependence of the noise on parameters such as transcription factor binding strength and copy number. We then performed experiments in which these parameters were systematically varied and measured the level of variability using mRNA FISH. The results showed a clear dependence of the noise on these parameters, in accord with model predictions.

Finally, one shortcoming of the preceding modeling frameworks is that their applicability is largely limited to systems that are already well-characterized, such as the lac promoter. Motivated by this fact, we used a high throughput promoter mutagenesis assay called Sort-Seq to explore the completely uncharacterized transcriptional regulatory DNA of the E. coli mechanosensitive channel of large conductance (MscL). We identified several candidate transcription factor binding sites, and work is continuing to identify the associated proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gating of the mechanosensitive channel MscS involves cooperative action of glycine and alanine residues along the pore-lining transmembrane helix. Opening of the channel is facilitated by an iris-like rotation and tilt of the pore-lining helices. Site-directed mutagenesis indicates that substantial structural plasticity can be tolerated by MscS without impairing its function.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We demonstrate that fluorescence resonance energy transfer spectroscopy is a powerful tool for in situ structural analysis of multimeric membrane proteins by measuring the conformational changes involved in gating the mechanosensitive ion channel of large conductance. Ensemble analysis is used to analyze the intensity of light emitted by AlexaFluor-labeled cysteine mutants reconstituted into artificial liposomes before and after acceptor photobleaching. The diameter of the protein is found to increase by 16 angstrom upon channel activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mechanosensitivity is a ubiquitous sensory mechanism found in living organisms. The simplest known mechanotransducing mechanism is found in bacteria in the form of the mechanosensitive membrane channel of large conductance, MscL. This channel has been studied extensively using a variety of methods at a functional and structural level. The channel is gated by membrane tension in the lipid bilayer alone. It serves as a safety valve protecting bacterial cells against hypoosmotic shock. MscL of Escherichia coli embedded in bilayers composed of asymmetric amounts of single-tailed and double-tailed lipids has been shown to gate spontaneously, even in the absence of membrane tension. To gain insight into the effect of the lipid membrane composition and geometry on MscL structure, a fully solvated, all-atom model of MscL in a stress-free curved bilayer composed of double- and single-tailed lipids was studied using a 9.5-ns molecular dynamics simulation. The bilayer was modeled as a domed structure accommodating the asymmetric composition of the monolayers. During the course of the simulation a spontaneous restructuring of the periplasmic loops occurred, leading to interactions between one of the loops and phospholipid headgroups. Previous experimental studies of the role of the loops agree with the observation that opening starts with a restructuring of the periplasmic loop, suggesting an effect of the curved bilayer. Because of limited resources, only one simulation of the large system was performed. However, the results obtained suggest that through the geometry and composition of the bilayer the protein structure can be affected even on short timescales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cardiac action potential (AP) is initiated by the depolarizing inward sodium current (I(Na)). The pore-forming subunit of the cardiac sodium channel, Na(v)1.5, is the main ion channel that conducts I(Na) in cardiac cells. Despite the large number of studies investigating Na(v)1.5, year after year, we are still learning new aspects regarding its roles in normal cardiac function and in diseased states. The clinical relevance of this channel cannot be understated. The cardiac I(Na) is the target of the class 1 anti-arrhythmic drugs(1), which are nowadays less frequently prescribed because of their well-documented pro-arrhythmic properties(2). In addition, since the first description in 1995 by Keating's group(3) of mutations in patients suffering from congenital long QT syndrome (LQTS) type 3, several hundred genetic variants in SCN5A, the gene coding for Na(v)1.5, have been reported and investigated(4). Interestingly, many of these genetic variants have been found in patients with diverse cardiac manifestations(5) such as congenital LQTS type 3, Brugada syndrome, conduction disorders, and more recently, atrial fibrillation and dilated cardiomyopathy. This impressive list underlines the importance of Na(v)1.5 in cardiac pathologies and raises the question about possible unknown roles and regulatory mechanisms of this channel in cardiac cells. Recent studies have provided experimental evidence that the function of Na(v)1.5, among many other described regulatory mechanisms(6), is also modulated by the mechanical stretch of the membrane in which it is embedded(7), thus suggesting that Na(v)1.5, like other ion channels, is "mechanosensitive". What does this mean? (SELECT FULL TEXT TO CONTINUE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The patch-clamp technique allows currents to be recorded through single ion channels in patches of cell membrane in the tips of glass pipettes. When recording, voltage is typically applied across the membrane patch to drive ions through open channels and to probe the voltage-sensitivity of channel activity. In this study, we used video microscopy and single-channel recording to show that prolonged depolarization of a membrane patch in borosilicate pipettes results in delayed slow displacement of the membrane into the pipette and that this displacement is associated with the activation of mechanosensitive (MS) channels in the same patch. The membrane displacement, ≈1 μm with each prolonged depolarization, occurs after variable delays ranging from tens of milliseconds to many seconds and is correlated in time with activation of MS channels. Increasing the voltage step shortens both the delay to membrane displacement and the delay to activation. Preventing depolarization-induced membrane displacement by applying positive pressure to the shank of the pipette or by coating the tips of the borosilicate pipettes with soft glass prevents the depolarization-induced activation of MS channels. The correlation between depolarization-induced membrane displacement and activation of MS channels indicates that the membrane displacement is associated with sufficient membrane tension to activate MS channels. Because membrane tension can modulate the activity of various ligand and voltage-activated ion channels as well as some transporters, an apparent voltage dependence of a channel or transporter in a membrane patch in a borosilicate pipette may result from voltage-induced tension rather than from direct modulation by voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2(+)-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orientational fluorophores have been a useful tool in physical chemistry, biochemistry, and more recently structural biology due to the polarized nature of the light they emit and that fact that energy can be transferred between them. We present a practical scheme in which measurements of the intensity of emitted fluorescence can be used to determine limits on the mean and distribution of orientation of the absorption transition moment of membrane-bound. uorophores. We demonstrate how information about the orientation of. uorophores can be used to calculate the orientation factor k(2) required for use in FRET spectroscopy. We illustrate the method using images of AlexaFluor probes bound to MscL mechanosensitive transmembrane channel proteins in spherical liposomes.