962 resultados para Mean-Reverting Jump-Diffusion
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
In this technical note we consider the mean-variance hedging problem of a jump diffusion continuous state space financial model with the re-balancing strategies for the hedging portfolio taken at discrete times, a situation that more closely reflects real market conditions. A direct expression based on some change of measures, not depending on any recursions, is derived for the optimal hedging strategy as well as for the ""fair hedging price"" considering any given payoff. For the case of a European call option these expressions can be evaluated in a closed form.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
In this paper we study the dynamic behavior of the term structureof Interbank interest rates and the pricing of options on interest ratesensitive securities. We posit a generalized single factor model withjumps to take into account external influences in the market. Daily datais used to test for jump effects. Qualitative examination of the linkagebetween Monetary Authorities' interventions and jumps are studied. Pricingresults suggests a systematic underpricing in bonds and call options ifthe jumps component is not included. However, the pricing of put optionson bonds presents indeterminacies.
Resumo:
In this paper, generalizing results in Alòs, León and Vives (2007b), we see that the dependence of jumps in the volatility under a jump-diffusion stochastic volatility model, has no effect on the short-time behaviour of the at-the-money implied volatility skew, although the corresponding Hull and White formula depends on the jumps. Towards this end, we use Malliavin calculus techniques for Lévy processes based on Løkka (2004), Petrou (2006), and Solé, Utzet and Vives (2007).
Resumo:
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be neither a difussion, nor a Markov process as the examples in section 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
Resumo:
This paper presents a two--factor model of the term structure ofinterest rates. We assume that default free discount bond prices aredetermined by the time to maturity and two factors, the long--term interestrate and the spread (difference between the long--term rate and theshort--term (instantaneous) riskless rate). Assuming that both factorsfollow a joint Ornstein--Uhlenbeck process, a general bond pricing equationis derived. We obtain a closed--form expression for bond prices andexamine its implications for the term structure of interest rates. We alsoderive a closed--form solution for interest rate derivatives prices. Thisexpression is applied to price European options on discount bonds andmore complex types of options. Finally, empirical evidence of the model'sperformance is presented.
Resumo:
The paper is motivated by the valuation problem of guaranteed minimum death benefits in various equity-linked products. At the time of death, a benefit payment is due. It may depend not only on the price of a stock or stock fund at that time, but also on prior prices. The problem is to calculate the expected discounted value of the benefit payment. Because the distribution of the time of death can be approximated by a combination of exponential distributions, it suffices to solve the problem for an exponentially distributed time of death. The stock price process is assumed to be the exponential of a Brownian motion plus an independent compound Poisson process whose upward and downward jumps are modeled by combinations (or mixtures) of exponential distributions. Results for exponential stopping of a Lévy process are used to derive a series of closed-form formulas for call, put, lookback, and barrier options, dynamic fund protection, and dynamic withdrawal benefit with guarantee. We also discuss how barrier options can be used to model lapses and surrenders.
Resumo:
The aim of this work is to compare two families of mathematical models for their respective capability to capture the statistical properties of real electricity spot market time series. The first model family is ARMA-GARCH models and the second model family is mean-reverting Ornstein-Uhlenbeck models. These two models have been applied to two price series of Nordic Nord Pool spot market for electricity namely to the System prices and to the DenmarkW prices. The parameters of both models were calibrated from the real time series. After carrying out simulation with optimal models from both families we conclude that neither ARMA-GARCH models, nor conventional mean-reverting Ornstein-Uhlenbeck models, even when calibrated optimally with real electricity spot market price or return series, capture the statistical characteristics of the real series. But in the case of less spiky behavior (System prices), the mean-reverting Ornstein-Uhlenbeck model could be seen to partially succeeded in this task.
Resumo:
In my work I derive closed-form pricing formulas for volatility based options by suitably approximating the volatility process risk-neutral density function. I exploit and adapt the idea, which stands behind popular techniques already employed in the context of equity options such as Edgeworth and Gram-Charlier expansions, of approximating the underlying process as a sum of some particular polynomials weighted by a kernel, which is typically a Gaussian distribution. I propose instead a Gamma kernel to adapt the methodology to the context of volatility options. VIX vanilla options closed-form pricing formulas are derived and their accuracy is tested for the Heston model (1993) as well as for the jump-diffusion SVJJ model proposed by Duffie et al. (2000).
Resumo:
Analisi di una strategia di trading mean reverting al fine di valutare la fattibilita del suo utilizzo intraday nel mercato telematico azionario italiano. Panoramica sui sistemi di meccanizzazione algoritmica e approfondimento sull'HFT.
Resumo:
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).
Resumo:
Introduction This dissertation consists of three essays in equilibrium asset pricing. The first chapter studies the asset pricing implications of a general equilibrium model in which real investment is reversible at a cost. Firms face higher costs in contracting than in expanding their capital stock and decide to invest when their productive capital is scarce relative to the overall capital of the economy. Positive shocks to the capital of the firm increase the size of the firm and reduce the value of growth options. As a result, the firm is burdened with more unproductive capital and its value lowers with respect to the accumulated capital. The optimal consumption policy alters the optimal allocation of resources and affects firm's value, generating mean-reverting dynamics for the M/B ratios. The model (1) captures convergence of price-to-book ratios -negative for growth stocks and positive for value stocks - (firm migration), (2) generates deviations from the classic CAPM in line with the cross-sectional variation in expected stock returns and (3) generates a non-monotone relationship between Tobin's q and conditional volatility consistent with the empirical evidence. The second chapter proposes a standard portfolio-choice problem with transaction costs and mean reversion in expected returns. In the presence of transactions costs, no matter how small, arbitrage activity does not necessarily render equal all riskless rates of return. When two such rates follow stochastic processes, it is not optimal immediately to arbitrage out any discrepancy that arises between them. The reason is that immediate arbitrage would induce a definite expenditure of transactions costs whereas, without arbitrage intervention, there exists some, perhaps sufficient, probability that these two interest rates will come back together without any costs having been incurred. Hence, one can surmise that at equilibrium the financial market will permit the coexistence of two riskless rates that are not equal to each other. For analogous reasons, randomly fluctuating expected rates of return on risky assets will be allowed to differ even after correction for risk, leading to important violations of the Capital Asset Pricing Model. The combination of randomness in expected rates of return and proportional transactions costs is a serious blow to existing frictionless pricing models. Finally, in the last chapter I propose a two-countries two-goods general equilibrium economy with uncertainty about the fundamentals' growth rates to study the joint behavior of equity volatilities and correlation at the business cycle frequency. I assume that dividend growth rates jump from one state to other, while countries' switches are possibly correlated. The model is solved in closed-form and the analytical expressions for stock prices are reported. When calibrated to the empirical data of United States and United Kingdom, the results show that, given the existing degree of synchronization across these business cycles, the model captures quite well the historical patterns of stock return volatilities. Moreover, I can explain the time behavior of the correlation, but exclusively under the assumption of a global business cycle.