899 resultados para Mean vector


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we propose new control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The traditional tools used for this purpose are the T (2) and the |S| charts. However, these charts have two drawbacks: (1) the T (2) and the |S| statistics are not easy to compute, and (2) after a signal, they do not distinguish the variable affected by the assignable cause. As an alternative to (1), we propose the MVMAX chart, which only requires the computation of sample means and sample variances. As an alternative to (2), we propose the joint use of two charts based on the non-central chi-square statistic (NCS statistic), named as the NCS charts. Once the NCS charts signal, the user can immediately identify the out-of-control variable. In general, the synthetic MVMAX chart is faster than the NCS charts and the joint T (2) and |S| charts in signaling processes disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MRMAX chart is a single chart based on the standardized sample means and sample ranges for monitoring the mean vector and the covariance matrix of multivariate processes. User's familiarity with the computation of these statistics is a point in favor of the MRMAX chart. As a single chart, the recently proposed MRMAX chart is very appropriate for supplementary runs rules. In this article, we compare the supplemented MRMAX chart and the synthetic MRMAX chart with the standard MRMAX chart. The supplementary and the synthetic runs rules enhance the performance of the MRMAX chart. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The classification rules of linear discriminant analysis are defined by the true mean vectors and the common covariance matrix of the populations from which the data come. Because these true parameters are generally unknown, they are commonly estimated by the sample mean vector and covariance matrix of the data in a training sample randomly drawn from each population. However, these sample statistics are notoriously susceptible to contamination by outliers, a problem compounded by the fact that the outliers may be invisible to conventional diagnostics. High-breakdown estimation is a procedure designed to remove this cause for concern by producing estimates that are immune to serious distortion by a minority of outliers, regardless of their severity. In this article we motivate and develop a high-breakdown criterion for linear discriminant analysis and give an algorithm for its implementation. The procedure is intended to supplement rather than replace the usual sample-moment methodology of discriminant analysis either by providing indications that the dataset is not seriously affected by outliers (supporting the usual analysis) or by identifying apparently aberrant points and giving resistant estimators that are not affected by them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers. that generalize well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we consider the T(2) chart with double sampling to control bivariate processes (BDS chart). During the first stage of the sampling, n(1) items of the sample are inspected and two quality characteristics (x; y) are measured. If the Hotelling statistic T(1)(2) for the mean vector of (x; y) is less than w, the sampling is interrupted. If the Hotelling statistic T(1)(2) is greater than CL(1), where CL(1) > w, the control chart signals an out-of-control condition. If w < T(1)(2) <= CL(1), the sampling goes on to the second stage, where the remaining n(2) items of the sample are inspected and T(2)(2) for the mean vector of the whole sample is computed. During the second stage of the sampling, the control chart signals an out-of-control condition when the statistic T(2)(2) is larger than CL(2). A comparative study shows that the BDS chart detects process disturbances faster than the standard bivariate T(2) chart and the adaptive bivariate T(2) charts with variable sample size and/or variable sampling interval.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The T-2 and the generalized variance vertical bar S vertical bar charts are used for monitoring the mean vector and the covariance matrix of multivariate processes. In this article, we propose for bivariate processes the use of the T-2 and the VMAX charts. The points plotted on the VMAX chart correspond to the maximum of the sample variances of the two quality characteristics. The reason to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is the user's familiarity with the computation of simple sample variances; we can't say the same with regard to the computation of the generalized variance vertical bar S vertical bar.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The T2 chart and the generalized variance |S| chart are the usual tools for monitoring the mean vector and the covariance matrix of multivariate processes. The main drawback of these charts is the difficulty to obtain and to interpret the values of their monitoring statistics. In this paper, we study control charts for monitoring bivariate processes that only requires the computation of sample means (the ZMAX chart) for monitoring the mean vector, sample variances (the VMAX chart) for monitoring the covariance matrix, or both sample means and sample variances (the MCMAX chart) in the case of the joint control of the mean vector and the covariance matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technological advances and the availability of computational resources have been facilitating the collection and processing of data. Thus, the natural tendency of the monitoring processes is the simultaneous control of various quality characteristics. In automated processes, observations are generally autocorrelated. Studies with univariate graph for processes have shown that the autocorrelation reduces the ability of this signal changes in the process. In this paper, we study the multivariate autocorrelated processes. Through simulations are obtained properties of graphs, monitoring the mean vector, the properties of graphs VMAX, in monitoring the covariance matrix, and the properties of graphs MCMAX, the simultaneous monitoring of mean vector and covariance matrix. Conclude that increasing the autocorrelation and the number of variables being monitored, reduces the power of the graphics in signal of a special cause

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we present a new control chart for monitoring the covariance matrix in a bivariate process. In this method, n observations of the two variables were considered as if they came from a single variable (as a sample of 2n observations), and a sample variance was calculated. This statistic was used to build a new control chart specifically as a VMIX chart. The performance of the new control chart was compared with its main competitors: the generalized sampled variance chart, the likelihood ratio test, Nagao's test, probability integral transformation (v(t)), and the recently proposed VMAX chart. Among these statistics, only the VMAX chart was competitive with the VMIX chart. For shifts in both variances, the VMIX chart outperformed VMAX; however, VMAX showed better performance for large shifts (higher than 10%) in one variance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.