924 resultados para Mean Value Theorem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this note is to characterize all pairs of sufficiently smooth functions for which the mean value in the Cauchy mean value theorem is taken at a point which has a well-determined position in the interval. As an application of this result, a partial answer is given to a question posed by Sahoo and Riedel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For non-negative random variables with finite means we introduce an analogous of the equilibrium residual-lifetime distribution based on the quantile function. This allows us to construct new distributions with support (0, 1), and to obtain a new quantile-based version of the probabilistic generalization of Taylor's theorem. Similarly, for pairs of stochastically ordered random variables we come to a new quantile-based form of the probabilistic mean value theorem. The latter involves a distribution that generalizes the Lorenz curve. We investigate the special case of proportional quantile functions and apply the given results to various models based on classes of distributions and measures of risk theory. Motivated by some stochastic comparisons, we also introduce the “expected reversed proportional shortfall order”, and a new characterization of random lifetimes involving the reversed hazard rate function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition. This last result slightly improves some earlier work by G. Barles and H. Ishii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain sharp estimates for multidimensional generalisations of Vinogradov’s mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se prueba que para dos funciones continuas reales, una determinada ecuación posee solució única. Se presenta también una generalización a integrales con peso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number generators. We point out that they can be further exploited as control variates to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the twodimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 26A24, 26D15; Secondary 41A05