996 resultados para Maximum draw down


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production and release of dissolved organic carbon (DOC) from peat soils is thought to be sensitive to changes in climate, specifically changes in temperature and rainfall. However, little is known about the actual rates of net DOC production in response to temperature and water table draw-down, particularly in comparison to carbon dioxide (CO2) fluxes. To explore these relationships, we carried out a laboratory experiment on intact peat soil cores under controlled temperature and water table conditions to determine the impact and interaction of each of these climatic factors on net DOC production. We found a significant interaction (P < 0.001) between temperature, water table draw-down and net DOC production across the whole soil core (0 to −55 cm depth). This corresponded to an increase in the Q10 (i.e. rise in the rate of net DOC production over a 10 °C range) from 1.84 under high water tables and anaerobic conditions to 3.53 under water table draw-down and aerobic conditions between −10 and − 40 cm depth. However, increases in net DOC production were only seen after water tables recovered to the surface as secondary changes in soil water chemistry driven by sulphur redox reactions decreased DOC solubility, and therefore DOC concentrations, during periods of water table draw-down. Furthermore, net microbial consumption of DOC was also apparent at − 1 cm depth and was an additional cause of declining DOC concentrations during dry periods. Therefore, although increased temperature and decreased rainfall could have a significant effect on net DOC release from peatlands, these climatic effects could be masked by other factors controlling the biological consumption of DOC in addition to soil water chemistry and DOC solubility. These findings highlight both the sensitivity of DOC release from ombrotrophic peat to episodic changes in water table draw-down, and the need to disentangle complex and interacting controls on DOC dynamics to fully understand the impact of environmental change on this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apesar da diversidade de suas estratégias, os retornos dos fundos de investimentos multimercado geralmente exibem correlação positiva com índices de bolsa. Por outro lado, fundos de categorias distintas tendem a ser menos correlacionados entre si se comparados a fundos de mesma categoria. A ideia de diversificação entre fundos de baixa correlação é discutida recorrentemente pela literatura. Na prática, porém, poucos alocadores de portfólios otimizam suas carteiras através das linhas de Markowitz (1953) por exemplo. O objetivo deste estudo é buscar identificar o ponto ótimo de diversificação de ativos (fundos de investimentos) dentro de uma mesma categoria. Como metodologia, buscaremos a minimização do risco idiossincrático dos fundos de investimentos através de simulações com outros fundos de mesma categoria. O estudo contém análises para a escolha do número ideal de ativos em um dado portfólio. Esses resultados beneficiariam, principalmente, o processo decisório das empresas de Wealth Managements, das Consultorias de Investimentos e dos Private Bankers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ice core records demonstrate a glacial-interglacial atmospheric CO2 increase by ~100 ppm, while 14C calibration efforts document a strong decrease in atmospheric 14C concentration during this period. A calculated transfer of ~530 Gt of 14C depleted carbon is required to produce the deglacial coeval rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide d14C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the maximum 14C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14C yr, in the extreme reaching 5100 14C yr. Below 2000 m depth the 14C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We propose as working hypothesis that the modern regression of DIC vs d14C also applies for LGM times, which implies that a mean LGM aging by ~600 14C yr corresponded to a global rise of ~85-115 µmol DIC/kg in the deep ocean. Thus, the prolonged residence time of ocean deep waters may indeed have made it possible to absorb an additional ~730-980 Gt DIC, one third of which possibly originated from intermediate waters. We also infer that LGM deep-water O2 dropped to suboxic values of <10µmol/kg in the Atlantic sector of the Southern Ocean, possibly also in the subpolar North Pacific. The outlined deglacial transfer of the extra aged, deep-ocean carbon to the atmosphere via the dynamic ocean-atmosphere carbon exchange would be sufficient to account for two trends observed, (1) for the increase in atmospheric CO2 and (2) for the 190-permil drop in atmospheric d14C during the so-called HS-1 'Mystery Interval', when atmospheric 14C production rates were largely constant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The data base for this study is represented by essentially nonevaporitic Messinian sediments recovered at ODP Sites 654, 653, 652, and 656 along the eastern Sardinian margin, and of the overlying early Pliocene oozes. Grain-size distribution, carbonate content, and microscopic observation of the sand size fractions were investigated. Messinian paleoenvironments, documented in the western Tyrrhenian Sea (ODP Sites 654 and 653), provide additional evidence supporting the deep basin desiccation model. A sharp lithologic contrast between early Pliocene pelagic oozes and latest Messinian conformable gypsiferous silts supports this model. The "lago-mare" biofacies was only occasionally observed in the shallowest site and is limited to the topmost part of the Messinian. Sites 652 and 656, lying in the deeper part of the Tyrrhenian and located on the downthrown side of an important eastward dipping fault system known as "Faglia centrale" are characterized by terrigenous sedimentation, with partly recycled minor evaporites. Of special interest is Site 652, where the thickness of the (probable) Messinian is 530 m. Sedimentary characters indicate a permanently subaqueous but nonmarine environment, with turbidites accumulating in a rapidly subsiding basin. According to the model proposed, this basin was fed by continental waters during times of maximum evaporitic draw-down, with temporary marine incursions from the west or southwest when the water level was higher. A basement ridge separated the evaporating pond from this endoreic lake located on the opposite (eastern) margin of the Tyrrhenian Basin, which was then limited to its western part. Post-Messinian reactivation of the "Faglia centrale" is necessary to account for the inversion of the relief.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Agulhas Ridge, off the tip of Africa between the Atlantic and Indian Oceans, is ideally located to capture the evolution of Paleogene-early Neogene circulation patterns associated with global cooling. Multiproxy records of productivity (biogenic barium (Baex), opal, CaCO3 mass accumulation rates (MARs)), nutrient and organic carbon burial (reactive phosphorus (Pr) MARs), and redox state of deep waters (U enrichment) from Ocean Drilling Program (ODP) Site 1090 reflect hydrographic shifts in this region between the middle Eocene and early Oligocene (~9-33 Ma). Several peaks in increased export productivity and burial of organic matter occurred within the late Eocene (~36.5, ~34, and ~33.7 Ma), which along with surface hydrologic conditions favoring opaline organisms over calcareous organisms could have aided in the draw down of pCO2 to a threshold level that facilitated large ice sheet development on Antarctica in the earliest Oligocene. Our multiproxy approach illustrates the importance of vertical as well as spatial hydrographic reorganization in amplifying or driving climatic cooling of the middle Eocene to early Oligocene by facilitating increases in the relative or absolute burial of organic carbon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis consists of three studies on investment strategies for Australian retirees. Specifically, it investigates retirees' preference between alternative drawdown strategies in the presence of government pensions, appropriate management of longevity risk through the use of deferred annuities and asset allocation in retirement. It finds drawdown strategies linked to life expectancy to be the best performers. Deferred annuities are found to improve retirement incomes for risk averse retirees. For retirees who want to meet certain wealth thresholds in retirement, equity dominated portfolios provide superior outcomes for higher threshold levels.