974 resultados para Mathematical knowledge
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Based on a divide and conquer approach, knowledge about nature has been organized into a set of interrelated facts, allowing a natural representation in terms of graphs: each `chunk` of knowledge corresponds to a node, while relationships between such chunks are expressed as edges. This organization becomes particularly clear in the case of mathematical theorems, with their intense cross-implications and relationships. We have derived a web of mathematical theorems from Wikipedia and, thanks to the powerful concept of entropy, identified its more central and frontier elements. Our results also suggest that the central nodes are the oldest theorems, while the frontier nodes are those recently added to the network. The network communities have also been identified, allowing further insights about the organization of this network, such as its highly modular structure.
Resumo:
In this thesis, the author presents a query language for an RDF (Resource Description Framework) database and discusses its applications in the context of the HELM project (the Hypertextual Electronic Library of Mathematics). This language aims at meeting the main requirements coming from the RDF community. in particular it includes: a human readable textual syntax and a machine-processable XML (Extensible Markup Language) syntax both for queries and for query results, a rigorously exposed formal semantics, a graph-oriented RDF data access model capable of exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full set of Boolean operators to compose the query constraints, fully customizable and highly structured query results having a 4-dimensional geometry, some constructions taken from ordinary programming languages that simplify the formulation of complex queries. The HELM project aims at integrating the modern tools for the automation of formal reasoning with the most recent electronic publishing technologies, in order create and maintain a hypertextual, distributed virtual library of formal mathematical knowledge. In the spirit of the Semantic Web, the documents of this library include RDF metadata describing their structure and content in a machine-understandable form. Using the author's query engine, HELM exploits this information to implement some functionalities allowing the interactive and automatic retrieval of documents on the basis of content-aware requests that take into account the mathematical nature of these documents.
Resumo:
"A letter from Mr. John Clayton ... giving an account of several observables in Virginia, and in his voyage thither", v. 3, p. 281-355.
Resumo:
Nos. 144-145 omitted in the paging of v. 1.
Resumo:
Радослав Павлов - Представен е проектът EuDML – Европейската цифрова библиотека по математика (http://www.eudml.eu), който цели: • да създаде обща инфраструктура за безпроблемна навигация, търсене и взаимодействие в рамките на плътна мрежа от разпределено валидирано многоезично математическо съдържание в цифрова форма, което да е достъпно в цяла Европа, и така да направи математиката лесно достъпна за всички потребители; • да задоволи изискването за надежден и дългосрочен достъп до математическите изследвания. Представен е и българският принос в проекта – BulDML – цифрово хранилище за математическа литература на Института по математика и информатика на БАН (http://sci-gems.math.bas.bg).
Resumo:
In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdos-Renyi or Barabasi-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.
Resumo:
Mathematical literacy in Portugal is very unsatisfactory in what concerns international standards. Even more disturbingly, the Azores archipelago ranks as one of the worst regions of Portugal in this respect. We reason that the popularisation of Mathematics through interactive exhibitions and activities can contribute actively to disseminate mathematical knowledge, increase awareness of the importance of Mathematics in today’s world and change its negative perception by the majority of the citizens. Although a significant investment has been undertaken by the local regional government in creating several science centres for the popularisation of Science, there is no centre for the popularisation of Mathematics. We present our first steps towards bringing Mathematics to unconventional settings by means of hands-on activities. We describe in some detail three activities. One activity has to do with applying trigonometry to measure distances in Astronomy, which can also be applied to Earth objects. Another activity concerns the presence of numerical patterns in the Azorean flora. The third activity explores geometrical patterns in the Azorean cultural heritage. It is our understanding that the implementation of these and other easy-to-follow and challenging activities will contribute to the awareness of the importance and beauty of Mathematics.
Resumo:
This article describes an intervention process undertaken in a training program for preschool and first grade teachers from public schools in Cali, Colombia. The objective of this process is to provide a space for teachers to reflect on pedagogical practices which allow them to generate educational processes that foster children’s understanding of mathematical knowledge in the classroom. A set of support strategies was presented for helping teachers in the design, analysis and implementation of learning environments as meaningful educational spaces. Furthermore, participants engaged in an analysis of their own intervention modalities to identify which modalities facilitate the development of mathematical abilities in children. In order to ascertain the transformations in the teachers’ learning environments, the mathematical competences and cognitive processes underlying the activities proposed in the classroom, as well as teacher intervention modalities and the types of student participation in classroom activities were examined both before and after the intervention process. Transformations in the teachers’ conceptions about the children’s abilities and their own practices in teaching mathematics in the classroom were evidenced.
Resumo:
The goal of a research programme Evidence Algorithm is a development of an open system of automated proving that is able to accumulate mathematical knowledge and to prove theorems in a context of a self-contained mathematical text. By now, the first version of such a system called a System for Automated Deduction, SAD, is implemented in software. The system SAD possesses the following main features: mathematical texts are formalized using a specific formal language that is close to a natural language of mathematical publications; a proof search is based on special sequent-type calculi formalizing natural reasoning style, such as application of definitions and auxiliary propositions. These calculi also admit a separation of equality handling from deduction that gives an opportunity to integrate logical reasoning with symbolic calculation.
Resumo:
This action research project describes a research project designed and implemented specifically with an emphasis on the instruction of mathematical vocabulary. The targeted population was my second period classroom of sixth grade students. This group of seventeen students represented diverse socioeconomic backgrounds and abilities. The school is located in a community of a population of approximately 5,000 people in the Midwest. My research investigation focused on the use of specific methods of vocabulary instruction and students’ use of precise mathematical vocabulary in writing and speaking. I wanted to see what effects these strategies would have on student performance. My research suggested that students who struggle with retention of mathematical knowledge have inadequate language skills. My research also revealed that students who have a sound knowledge of vocabulary and are engaged in the specific use of content language performed more successfully. Final analysis indicated that students believed the use of specific mathematical language helped them to be more successful and they made moderate progress in their performance on assessments.
Resumo:
In this action research study of my classroom of seventh grade mathematics, I investigated the use of non-traditional activities to enhance mathematical connections. The types of nontraditional activities used were hands-on activities, written explanations, and oral communication that required students to apply a new mathematical concept to either prior knowledge or a realworld application. I discovered that the use of non-traditional activities helped me reach a variety of learners in my classroom. These activities also increased my students’ abilities to apply their mathematical knowledge to different applications. Having students explain their reasoning during non-traditional activities improved their communications skills, both orally and in writing. As a result of this research, I plan to incorporate more non-traditional activities into my curriculum. In doing so, I hope to continue to increase my students’ abilities to solve problems. I also plan to incorporate the use of written explanations of my students’ mathematical reasoning in order to continue to improve their communication of mathematics.