985 resultados para Material optimization


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Various piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films depend on charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to deteriorate owing to strong vacuum UV, � -, X-ray, energetic particles and atomic oxygen exposure. We have investigated the degradation of PVDF and its copolymers under various stress environments detrimental to reliable operation in space. Initial radiation aging studies have shown complex material changes with lowered Curie temperatures, complex material changes with lowered melting points, morphological transformations and significant crosslinking, but little influence on piezoelectric d33 constants. Complex aging processes have also been observed in accelerated temperature environments inducing annealing phenomena and cyclic stresses. The results suggest that poling and chain orientation are negatively affected by radiation and temperature exposure. A framework for dealing with these complex material qualification issues and overall system survivability predictions in low earth orbit conditions has been established. It allows for improved material selection, feedback for manufacturing and processing, material optimization/stabilization strategies and provides guidance on any alternative materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Finding an optimum reinforcement layout for underground excavation can result in a safer and more economical design, and is therefore highly desirable. Some works in the literature have applied topology optimization in tunnel reinforcement design in which reinforced rock is modeled as homogenized isotropic material. Optimization results, therefore, do not clearly show reinforcement distributions, leading to difficulties in explaining the final outcomes. To overcome this deficiency, a more sophisticated modeling technique in which reinforcements are explicitly modeled as truss elements embedded in rock mass media is used. An optimization algorithm extending the solid isotropic material with penalization method is introduced to seek for an optimal bolt layout. To obtain the stiffest structure with a given amount of reinforced material, external work along the opening is selected as the objective function with a constraint on the volume of reinforcement. The presented technique does not depend on material models used for rock and reinforcements and can be applied to any material model. Nonlinear material behavior of rock and reinforcement is considered in this work. Through solving some typical examples, the proposed approach is proved to enhance the conventional reinforcement design and provide clear and practical reinforcement layouts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las estructuras que trabajan por forma se caracterizan por la íntima e indisociable relación entre geometría y comportamiento estructural. Por consiguiente, la elección de una apropiada geometría es el paso previo indispensable en el diseño conceptual de dichas estructuras. En esa tarea, la selección de las posibles geometrías antifuniculares para las distribuciones de cargas permanentes más habituales son más bien limitadas y, muchas veces, son criterios no estructurales (adaptabilidad funcional, estética, proceso constructivo, etc.) los que no permiten la utilización de dichas geometrías que garantizarían el máximo aprovechamiento del material. En este contexto, esta tesis estudia la posibilidad de obtener una estructura sin momentos flectores incluso si la geometría no es antifunicular para sus cargas permanentes. En efecto, esta tesis presenta un procedimiento, basado en la estática gráfica, que demuestra cómo un conjunto de cargas adicionales, introducidas a través de un sistema de pretensado exterior con elementos post-tesos, puede eliminar los momentos flectores debidos a cargas permanentes en cualquier geometría plana. Esto se traduce en una estructura antifunicular que proporciona respuestas innovadoras a demandas conjuntas de versatilidad arquitectónica y optimización del material. Dicha metodología gráfica ha sido implementada en un software distribuido libremente (EXOEQUILIBRIUM), donde el análisis estructural y la variación geométrica están incluidos en el mismo entorno interactivo y paramétrico. La utilización de estas herramientas permite más versatilidad en la búsqueda de nuevas formas eficientes, lo cual tiene gran importancia en el diseño conceptual de estructuras, liberando al ingeniero de la limitación del propio cálculo y de la incomprensión del comportamiento estructural, facilitando extraordinariamente el hecho creativo a la luz de una metodología de este estilo. Esta tesis incluye la aplicación de estos procedimientos a estructuras de cualquier geometría y distribución inicial de cargas, así como el estudio de diferentes posibles criterios de diseño para optimizar la posición del sistema de post-tesado. Además, la metodología ha sido empleada en el proyecto de maquetas a escala reducida y en la construcción de un pabellón hecho enteramente de cartón, lo que ha permitido obtener una validación física del procedimiento desarrollado. En definitiva, esta tesis expande de manera relevante el rango de posibles geometrías antifuniculares y abre enormes posibilidades para el diseño de estructuras que combinan eficiencia estructural y flexibilidad arquitectónica.Curved structures are characterized by the critical relationship between their geometry and structural behaviour, and selecting an appropriate shape in the conceptual design of such structures is important for achieving materialefficiency. However, the set of bending-free geometries are limited and, often, non-structural design criteria (e.g., usability, architectural needs, aesthetics) prohibit the selection of purely funicular or antifunicular shapes. In response to this issue, this thesis studies the possibility of achieving an axial-only behaviour even if the geometry departs from the ideally bending-free shape. This dissertation presents a new design approach, based on graphic statics that shows how bending moments in a two-dimensional geometry can be eliminated by adding forces through an external post-tensioning system. This results in bending-free structures that provide innovative answers to combined demands on versatility and material optimization. The graphical procedure has been implemented in a free-downloadable design-driven software (EXOEQUILIBRIUM) where structural performance evaluations and geometric variation are embedded within an interactive and parametric working environment. This provides greater versatility in finding new efficient structural configurations during the first design stages, bridging the gap between architectural shaping and structural analysis. The thesis includes the application of the developed graphical procedure to shapes with random curvature and distribution of loads. Furthermore, the effect of different design criteria on the internal force distribution has been analyzed. Finally, the construction of reduced- and large-scale models provides further physical validation of the method and insights about the structural behaviour of these structures. In summary, this work strongly expands the range of possible forms that exhibit a bending-free behaviour and, de facto, opens up new possibilities for designs that combine high-performing solutions with architectural freedom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High performance thermal insulating composite materials can be produced with mineral binders and hydrophobic aerogel particles through a hydrophilization process for the latter with surfactants. The present study is focused on the development of aerogel/calcium sulfate composites by the hydrophilization of hydrophobic silica aerogel particles through a polymer-based surfactant. Its effects on the microstructure and hydration degree are examined as well as their relation to the resulting mechanical and physical properties. Results show that composites with an around 60 % of aerogel by volume can achieve a thermal conductivity <30 mW/m × K. Interestingly, a surfactant addition of 0.1 % by wt% of the water in the mixtures provides better material properties compared to a surfactant wt% addition of 5 %. However, it has been found around 40 % entrained air, affecting the material properties by reducing the binder and aerogel volume fractions within the composites. Moreover, gypsum crystallization starts to be inhibited at aerogel volume fractions >35 %. Towards material optimization, a model for the calculation of thermal conductivity of composites and an equation for the compressive strength are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta uma nova metodologia para elastografia virtual em imagens simuladas de ultrassom utilizando métodos numéricos e métodos de visão computacional. O objetivo é estimar o módulo de elasticidade de diferentes tecidos tendo como entrada duas imagens da mesma seção transversal obtidas em instantes de tempo e pressões aplicadas diferentes. Esta metodologia consiste em calcular um campo de deslocamento das imagens com um método de fluxo óptico e aplicar um método iterativo para estimar os módulos de elasticidade (análise inversa) utilizando métodos numéricos. Para o cálculo dos deslocamentos, duas formulações são utilizadas para fluxo óptico: Lucas-Kanade e Brox. A análise inversa é realizada utilizando duas técnicas numéricas distintas: o Método dos Elementos Finitos (MEF) e o Método dos Elementos de Contorno (MEC), sendo ambos implementados em Unidades de Processamento Gráfico de uso geral, GpGPUs ( \"General Purpose Graphics Units\" ). Considerando uma quantidade qualquer de materiais a serem determinados, para a implementação do Método dos Elementos de Contorno é empregada a técnica de sub-regiões para acoplar as matrizes de diferentes estruturas identificadas na imagem. O processo de otimização utilizado para determinar as constantes elásticas é realizado de forma semi-analítica utilizando cálculo por variáveis complexas. A metodologia é testada em três etapas distintas, com simulações sem ruído, simulações com adição de ruído branco gaussiano e phantoms matemáticos utilizando rastreamento de ruído speckle. Os resultados das simulações apontam o uso do MEF como mais preciso, porém computacionalmente mais caro, enquanto o MEC apresenta erros toleráveis e maior velocidade no tempo de processamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of carbon fiber, particularly the oxidation/stabilization step, is a complex process. In the present study, a non-linear mathematical model has been developed for the prediction of density of polyacrylonitrile (PAN) and oxidized PAN fiber (OPF), as a key physical property for various applications, such as energy and material optimization, modeling, and design of the stabilization process. The model is based on the available functional groups in PAN and OPF. Expected functional groups, including [Formula presented], [Formula presented], –CH2, [Formula presented], and [Formula presented], were identified and quantified through the full deconvolution analysis of Fourier transform infrared attenuated total reflectance (FT-IR ATR) spectra obtained from fibers. These functional groups form the basis of three stabilization rendering parameters, representing the cyclization, dehydrogenation and oxidation reactions that occur during PAN stabilization, and are used as the independent variables of the non-linear predictive model. The k-fold cross validation approach, with k = 10, has been employed to find the coefficients of the model. This model estimates the density of PAN and OPF independent of operational parameters and can be expanded to all operational parameters. Statistical analysis revealed good agreement between the governing model and experiments. The maximum relative error was less than 1% for the present model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we explore simultaneous geometry design and material selection for statically determinate trusses by posing it as a continuous optimization problem. The underlying principles of our approach are structural optimization and Ashby’s procedure for material selection from a database. For simplicity and ease of initial implementation, only static loads are considered in this work with the intent of maximum stiffness, minimum weight/cost, and safety against failure. Safety of tensile and compression members in the truss is treated differently to prevent yield and buckling failures, respectively. Geometry variables such as lengths and orientations of members are taken to be the design variables in an assumed layout. Areas of cross-section of the members are determined to satisfy the failure constraints in each member. Along the lines of Ashby’s material indices, a new design index is derived for trusses. The design index helps in choosing the most suitable material for any geometry of the truss. Using the design index, both the design space and the material database are searched simultaneously using gradient-based optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous, although the material selection from a database is an inherently discrete problem. A few illustrative examples are included. It is observed that the method is capable of determining the optimal topology in addition to optimal geometry when the assumed layout contains more links than are necessary for optimality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finite-element mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step, (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a `leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (R) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we explore simultaneous design and material selection by posing it as an optimization problem. The underlying principles for our approach are Ashby's material selection procedure and structural optimization. For the simplicity and ease of initial implementation of the general procedure, truss structures under static load are considered in this work in view of maximum stiffness, minimum weight/cost and safety against failure. Along the lines of Ashby's material indices, a new design index is derived for trusses. This helps in choosing the most suitable material for any design of a truss. Using this, both the design space and material database are searched simultaneously using optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous even though the material selection is an inherently discrete problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present a novel formulation for performing topology optimization of electrostatically actuated constrained elastic structures. We propose a new electrostatic-elastic formulation that uses the leaky capacitor model and material interpolation to define the material state at every point of a given design domain continuously between conductor and void states. The new formulation accurately captures the physical behavior when the material in between a conductor and a void is present during the iterative process of topology optimization. The method then uses the optimality criteria method to solve the optimization problem by iteratively pushing the state of the domain towards that of a conductor or a void in the appropriate regions. We present examples to illustrate the ability of the method in creating the stiffest structure under electrostatic force for different boundary conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Superconductors are known for the ability to trap magnetic field. A thermally actuated magnetization (TAM) flux pump is a system that utilizes the thermal material to generate multiple small magnetic pulses resulting in a high magnetization accumulated in the superconductor. Ferrites are a good thermal material candidate for the future TAM flux pumps because the relative permeability of ferrite changes significantly with temperature, particularly around the Curie temperature. Several soft ferrites have been specially synthesized to reduce the cost and improve the efficiency of the TAM flux pump. Various ferrite compositions have been tested under a temperature variation ranging from 77K to 300K. The experimental results of the synthesized soft ferrites-Cu 0.3 Zn 0.7Ti 0.04Fe 1.96O 4, including the Curie temperature, magnetic relative permeability and the volume magnetization (emu/cm3), are presented in this paper. The results are compared with original thermal material, gadolinium, used in the TAM flux pump system.-Cu 0.3 Zn 0.7Ti 0.04 Fe 1.96O 4 holds superior characteristics and is believed to be a suitable material for next generation TAM flux pump. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Piezoresistive sensors are commonly made of a piezoresistive membrane attached to a flexible substrate, a plate. They have been widely studied and used in several applications. It has been found that the size, position and geometry of the piezoresistive membrane may affect the performance of the sensors. Based on this remark, in this work, a topology optimization methodology for the design of piezoresistive plate-based sensors, for which both the piezoresistive membrane and the flexible substrate disposition can be optimized, is evaluated. Perfect coupling conditions between the substrate and the membrane based on the `layerwise' theory for laminated plates, and a material model for the piezoresistive membrane based on the solid isotropic material with penalization model, are employed. The design goal is to obtain the configuration of material that maximizes the sensor sensitivity to external loading, as well as the stiffness of the sensor to particular loads, which depend on the case (application) studied. The proposed approach is evaluated by studying two distinct examples: the optimization of an atomic force microscope probe and a pressure sensor. The results suggest that the performance of the sensors can be improved by using the proposed approach.