939 resultados para Matematica Aplicada.
Resumo:
Azeotropia é um fenômeno termodinâmico onde um líquido em ebulição produz um vapor com composição idêntica. Esta situação é um desafio para a Engenharia de Separação, já que os processos de destilação exploram as diferenças entre as volatilidades relativas e, portanto, um azeótropo pode ser uma barreira para a separação. Em misturas binárias, o cálculo da azeotropia é caracterizado por um sistema não-linear do tipo 2 × 2. Um interessante e raro caso é o denominado azeotropia dupla, que pode ser verificado quando este sistema não-linear tem duas soluções, correspondendo a dois azeótropos distintos. Diferentes métodos tem sido utilizados na resolução de problemas desta natureza, como métodos estocásticos de otimização e as técnicas intervalares (do tipo Newton intervalar/bisseção generalizada). Nesta tese apresentamos a formulação do problema de azeotropia dupla e uma nova e robusta abordagem para a resolução dos sistemas não-lineares do tipo 2 × 2, que é a inversão de funções do plano no plano (MALTA; SALDANHA; TOMEI, 1996). No método proposto, as soluções são obtidas através de um conjunto de ações: obtenção de curvas críticas e de pré-imagens de pontos arbritários, inversão da função e por fim, as soluções esperadas para o problema de azeotropia. Esta metodologia foi desenvolvida para resolver sistemas não-lineares do tipo 2 × 2, tendo como objetivo dar uma visão global da função que modela o fenômeno em questão, além, é claro, de gerar as soluções esperadas. Serão apresentados resultados numéricos para o cálculo dos azeótropos no sistema benzeno + hexafluorobenzeno a baixas pressões por este método de inversão. Como ferramentas auxiliares, serão também apresentados aspectos numéricos usando aproximações clássicas, tais como métodos de Newton com técnicas de globalização e o algorítmo de otimização não-linear C-GRASP, para efeito de comparação.
Resumo:
Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.
Resumo:
In this work we study a new risk model for a firm which is sensitive to its credit quality, proposed by Yang(2003): Are obtained recursive equations for finite time ruin probability and distribution of ruin time and Volterra type integral equation systems for ultimate ruin probability, severity of ruin and distribution of surplus before and after ruin
Resumo:
The classifier support vector machine is used in several problems in various areas of knowledge. Basically the method used in this classier is to end the hyperplane that maximizes the distance between the groups, to increase the generalization of the classifier. In this work, we treated some problems of binary classification of data obtained by electroencephalography (EEG) and electromyography (EMG) using Support Vector Machine with some complementary techniques, such as: Principal Component Analysis to identify the active regions of the brain, the periodogram method which is obtained by Fourier analysis to help discriminate between groups and Simple Moving Average to eliminate some of the existing noise in the data. It was developed two functions in the software R, for the realization of training tasks and classification. Also, it was proposed two weights systems and a summarized measure to help on deciding in classification of groups. The application of these techniques, weights and the summarized measure in the classier, showed quite satisfactory results, where the best results were an average rate of 95.31% to visual stimuli data, 100% of correct classification for epilepsy data and rates of 91.22% and 96.89% to object motion data for two subjects.
Resumo:
Nesta dissertação é apresentada uma modelagem analítica para o processo evolucionário formulado pela Teoria da Evolução por Endossimbiose representado através de uma sucessão de estágios envolvendo diferentes interações ecológicas e metábolicas entre populações de bactérias considerando tanto a dinâmica populacional como os processos produtivos dessas populações. Para tal abordagem é feito uso do sistema de equações diferenciais conhecido como sistema de Volterra-Hamilton bem como de determinados conceitos geométricos envolvendo a Teoria KCC e a Geometria Projetiva. Os principais cálculos foram realizados pelo pacote de programação algébrica FINSLER, aplicado sobre o MAPLE.
Resumo:
Este trabalho apresenta um estudo teórico e numérico sobre os erros que ocorrem nos cálculos de gradientes em malhas não estruturadas constituídas pelo diagrama de Voronoi, malhas estas, formadas também pela triangulação de Delaunay. As malhas adotadas, no trabalho, foram as malhas cartesianas e as malhas triangulares, esta última é gerada pela divisão de um quadrado em dois ou quatro triângulos iguais. Para tal análise, adotamos a escolha de três metodologias distintas para o cálculo dos gradientes: método de Green Gauss, método do Mínimo Resíduo Quadrático e método da Média do Gradiente Projetado Corrigido. O texto se baseia em dois enfoques principais: mostrar que as equações de erros dadas pelos gradientes podem ser semelhantes, porém com sinais opostos, para pontos de cálculos em volumes vizinhos e que a ordem do erro das equações analíticas pode ser melhorada em malhas uniformes quando comparada as não uniformes, nos casos unidimensionais, e quando analisada na face de tais volumes vizinhos nos casos bidimensionais.
Resumo:
As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado
Resumo:
Neste trabalho, é proposta uma nova família de métodos a ser aplicada à otimização de problemas multimodais. Nestas técnicas, primeiramente são geradas soluções iniciais com o intuito de explorar o espaço de busca. Em seguida, com a finalidade de encontrar mais de um ótimo, estas soluções são agrupadas em subespaços utilizando um algoritmo de clusterização nebulosa. Finalmente, são feitas buscas locais através de métodos determinísticos de otimização dentro de cada subespaço gerado na fase anterior com a finalidade de encontrar-se o ótimo local. A família de métodos é formada por seis variantes, combinando três esquemas de inicialização das soluções na primeira fase e dois algoritmos de busca local na terceira. A fim de que esta nova família de métodos possa ser avaliada, seus constituintes são comparados com outras metodologias utilizando problemas da literatura e os resultados alcançados são promissores.
Resumo:
Esta dissertação apresenta um aperfeiçoamento para o Sistema de Imagens Tridimensional Híbrido (SITH) que é utilizado para obtenção de uma superfície tridimensional do relevo de uma determinada região a partir de dois aerofotogramas consecutivos da mesma. A fotogrametria é a ciência e tecnologia utilizada para obter informações confiáveis a partir de imagens adquiridas por sensores. O aperfeiçoamento do SITH consistirá na automatização da obtenção dos pontos através da técnica de Transformada de Características Invariantes a Escala (SIFT - Scale Invariant Feature Transform) dos pares de imagens estereoscópicas obtidos por câmeras aéreas métricas, e na utilização de técnicas de interpolação por splines cúbicos para suavização das superfícies tridimensionais obtidas pelo mesmo, proporcionando uma visualização mais clara dos detalhes da área estudada e auxiliando em prevenções contra deslizamentos em locais de risco a partir de um planejamento urbano adequado. Os resultados computacionais mostram que a incorporação destes métodos ao programa SITH apresentaram bons resultados.
Análise global da estabilidade termodinâmica de misturas: um estudo com o método do conjunto gerador
Resumo:
O cálculo do equilíbrio de fases é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Mas para resolvê-lo é aconselhável que se estude a priori a estabilidade termodinâmica do sistema, a qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. Tal problema pode ser abordado como um problema de otimização, conhecido como a minimização da função distância do plano tangente à energia livre de Gibbs molar, onde modelos termodinâmicos, de natureza não convexa e não linear, são utilizados para descrevê-lo. Esse fato tem motivado um grande interesse em técnicas de otimização robustas e eficientes para a resolução de problemas relacionados com a termodinâmica do equilíbrio de fases. Como tem sido ressaltado na literatura, para proporcionar uma completa predição do equilíbrio de fases, faz-se necessário não apenas a determinação do minimizador global da função objetivo do teste de estabilidade, mas também a obtenção de todos os seus pontos estacionários. Assim, o desenvolvimento de metodologias para essa tarefa desafiadora tem se tornado uma nova área de pesquisa da otimização global aplicada à termodinâmica do equilíbrio, com interesses comuns na engenharia química e na engenharia do petróleo. O foco do presente trabalho é uma nova metodologia para resolver o problema do teste de estabilidade. Para isso, usa-se o chamado método do conjunto gerador para realizar buscas do tipo local em uma rede de pontos previamente gerada por buscas globais efetuadas com uma metaheurística populacional, no caso o método do enxame de partículas.Para se obter mais de um ponto estacionário, minimizam-se funções de mérito polarizadas, cujos pólos são os pontos previamente encontrados. A metodologia proposta foi testada na análise de quatorze misturas polares previamente consideradas na literatura. Os resultados mostraram que o método proposto é robusto e eficiente a ponto de encontrar, além do minimizador global, todos os pontos estacionários apontados previamente na literatura, sendo também capaz de detectar, em duas misturas ternárias estudadas, pontos estacionários não obtidos pelo chamado método de análise intervalar, uma técnica confiável e muito difundida na literatura. A análise do teste de estabilidade pela simples utilização do método do enxame de partículas associado à técnica de polarização mencionada acima, para a obtenção de mais de um ponto estacionário (sem a busca local feita pelo método do conjunto gerador em uma dada rede de pontos), constitui outra metodologia para a resolução do problema de interesse. Essa utilização é uma novidade secundária deste trabalho. Tal metodologia simplificada exibiu também uma grande robustez, sendo capaz de encontrar todos os pontos estacionários pesquisados. No entanto, quando comparada com a abordagem mais geral proposta aqui, observou-se que tal simplificação pode, em alguns casos onde a função de mérito apresenta uma geometria mais complexa, consumir um tempo de máquina relativamente grande, dessa forma é menos eficiente.
Resumo:
Neste trabalho é estudada a viabilidade de uma implementação em paralelo do algoritmo scale invariant feature transform (SIFT) para identificação de íris. Para a implementação do código foi utilizada a arquitetura para computação paralela compute unified device architecture (CUDA) e a linguagem OpenGL shading language (GLSL). O algoritmo foi testado utilizando três bases de dados de olhos e íris, o noisy visible wavelength iris image Database (UBIRIS), Michal-Libor e CASIA. Testes foram feitos para determinar o tempo de processamento para verificação da presença ou não de um indivíduo em um banco de dados, determinar a eficiência dos algoritmos de busca implementados em GLSL e CUDA e buscar valores de calibração que melhoram o posicionamento e a distribuição dos pontos-chave na região de interesse (íris) e a robustez do programa final.
Resumo:
Nas últimas décadas, o problema de escalonamento da produção em oficina de máquinas, na literatura referido como JSSP (do inglês Job Shop Scheduling Problem), tem recebido grande destaque por parte de pesquisadores do mundo inteiro. Uma das razões que justificam tamanho interesse está em sua alta complexidade. O JSSP é um problema de análise combinatória classificado como NP-Difícil e, apesar de existir uma grande variedade de métodos e heurísticas que são capazes de resolvê-lo, ainda não existe hoje nenhum método ou heurística capaz de encontrar soluções ótimas para todos os problemas testes apresentados na literatura. A outra razão basea-se no fato de que esse problema encontra-se presente no diaa- dia das indústrias de transformação de vários segmento e, uma vez que a otimização do escalonamento pode gerar uma redução significativa no tempo de produção e, consequentemente, um melhor aproveitamento dos recursos de produção, ele pode gerar um forte impacto no lucro dessas indústrias, principalmente nos casos em que o setor de produção é responsável por grande parte dos seus custos totais. Entre as heurísticas que podem ser aplicadas à solução deste problema, o Busca Tabu e o Multidão de Partículas apresentam uma boa performance para a maioria dos problemas testes encontrados na literatura. Geralmente, a heurística Busca Tabu apresenta uma boa e rápida convergência para pontos ótimos ou subótimos, contudo esta convergência é frequentemente interrompida por processos cíclicos e a performance do método depende fortemente da solução inicial e do ajuste de seus parâmetros. A heurística Multidão de Partículas tende a convergir para pontos ótimos, ao custo de um grande esforço computacional, sendo que sua performance também apresenta uma grande sensibilidade ao ajuste de seus parâmetros. Como as diferentes heurísticas aplicadas ao problema apresentam pontos positivos e negativos, atualmente alguns pesquisadores começam a concentrar seus esforços na hibridização das heurísticas existentes no intuito de gerar novas heurísticas híbridas que reúnam as qualidades de suas heurísticas de base, buscando desta forma diminuir ou mesmo eliminar seus aspectos negativos. Neste trabalho, em um primeiro momento, são apresentados três modelos de hibridização baseados no esquema geral das Heurísticas de Busca Local, os quais são testados com as heurísticas Busca Tabu e Multidão de Partículas. Posteriormente é apresentada uma adaptação do método Colisão de Partículas, originalmente desenvolvido para problemas contínuos, onde o método Busca Tabu é utilizado como operador de exploração local e operadores de mutação são utilizados para perturbação da solução. Como resultado, este trabalho mostra que, no caso dos modelos híbridos, a natureza complementar e diferente dos métodos Busca Tabu e Multidão de Partículas, na forma como são aqui apresentados, da origem à algoritmos robustos capazes de gerar solução ótimas ou muito boas e muito menos sensíveis ao ajuste dos parâmetros de cada um dos métodos de origem. No caso do método Colisão de Partículas, o novo algorítimo é capaz de atenuar a sensibilidade ao ajuste dos parâmetros e de evitar os processos cíclicos do método Busca Tabu, produzindo assim melhores resultados.
Resumo:
Neste trabalho é descrita a teoria necessária para a obtenção da grandeza denominada intensidade supersônica, a qual tem por objetivo identificar as regiões de uma fonte de ruído que efetivamente contribuem para a potência sonora, filtrando, consequentemente, a parcela referente às ondas sonoras recirculantes e evanescentes. É apresentada a abordagem de Fourier para a obtenção da intensidade supersônica em fontes com geometrias separáveis e a formulação numérica existente para a obtenção de um equivalente à intensidade supersônica em fontes sonoras com geometrias arbitrárias. Este trabalho apresenta como principal contribuição original, uma técnica para o cálculo de um equivalente à intensidade supersônica, denominado aqui de intensidade acústica útil, capaz de identificar as regiões de uma superfície vibrante de geometria arbitrária que efetivamente contribuem para a potência sonora que será radiada. Ao contrário da formulação numérica existente, o modelo proposto é mais direto, totalmente formulado na superfície vibrante, onde a potência sonora é obtida através de um operador (uma matriz) que relaciona a potência sonora radiada com a distribuição de velocidade normal à superfície vibrante, obtida com o uso do método de elementos finitos. Tal operador, chamado aqui de operador de potência, é Hermitiano, fato crucial para a obtenção da intensidade acússtica útil, após a aplicação da decomposição em autovalores e autovetores no operador de potência, e do critério de truncamento proposto. Exemplos de aplicações da intensidade acústica útil em superfícies vibrantes com a geometria de uma placa, de um cilindro com tampas e de um silenciador automotivo são apresentados, e os resultados são comparados com os obtidos via intensidade supersônica (placa) e via técnica numérica existente (cilindro), evidenciando que a intensidade acústica útil traz, como benefício adicional, uma redução em relação ao tempo computacional quando comparada com a técnica numérica existente.
Resumo:
A obtenção de imagens usando tomografia computadorizada revolucionou o diagnóstico de doenças na medicina e é usada amplamente em diferentes áreas da pesquisa científica. Como parte do processo de obtenção das imagens tomográficas tridimensionais um conjunto de radiografias são processadas por um algoritmo computacional, o mais usado atualmente é o algoritmo de Feldkamp, David e Kress (FDK). Os usos do processamento paralelo para acelerar os cálculos em algoritmos computacionais usando as diferentes tecnologias disponíveis no mercado têm mostrado sua utilidade para diminuir os tempos de processamento. No presente trabalho é apresentada a paralelização do algoritmo de reconstrução de imagens tridimensionais FDK usando unidades gráficas de processamento (GPU) e a linguagem CUDA-C. São apresentadas as GPUs como uma opção viável para executar computação paralela e abordados os conceitos introdutórios associados à tomografia computadorizada, GPUs, CUDA-C e processamento paralelo. A versão paralela do algoritmo FDK executada na GPU é comparada com uma versão serial do mesmo, mostrando maior velocidade de processamento. Os testes de desempenho foram feitos em duas GPUs de diferentes capacidades: a placa NVIDIA GeForce 9400GT (16 núcleos) e a placa NVIDIA Quadro 2000 (192 núcleos).
Resumo:
As técnicas inversas têm sido usadas na determinação de parâmetros importantes envolvidos na concepção e desempenho de muitos processos industriais. A aplicação de métodos estocásticos tem aumentado nos últimos anos, demonstrando seu potencial no estudo e análise dos diferentes sistemas em aplicações de engenharia. As rotinas estocásticas são capazes de otimizar a solução em uma ampla gama de variáveis do domínio, sendo possível a determinação dos parâmetros de interesse simultaneamente. Neste trabalho foram adotados os métodos estocásticos Luus-Jaakola (LJ) e Random Restricted Window (R2W) na obtenção dos ótimos dos parâmetros cinéticos de adsorção no sistema de cromatografia em batelada, tendo por objetivo verificar qual método forneceria o melhor ajuste entre os resultados obtidos nas simulações computacionais e os dados experimentais. Este modelo foi resolvido empregando o método de Runge- Kutta de 4 ordem para a solução de equações diferenciais ordinárias.