989 resultados para Masses.
Resumo:
This action research project investigated the use of a collaborative learning approach for addressing issues associated with teaching urban design to large, diverse cohorts. As a case study, I observed two semesters of an urban design unit that I revised between 2011 and 2012 to incorporate collaborative learning activities. Data include instructional materials, participant observations, peer-reviews of collaborative learning activities, feedback from students and instructors and student projects. Themes that emerged through qualitative analysis include the challenge of removing inequalities inherent in the diverse cohort, the challenge of unifying project guidance and marking criteria, and the challenge of providing project guidance for a very large cohort. Most notably, the study revealed a need to clarify learning objectives relating to design principles in order to fully transition to and benefit from a collaborative learning model.
Resumo:
Introduction. Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be determined. This study used CT scans of AIS patients to measure segmental torso masses and explores how joint moments in the coronal plane are affected by changes in the position of the intervertebral joint’s axis of rotation; particularly at the apex of a scoliotic major curve. Methods. Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint torques occurring in the spine for a group of 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). Image processing software, ImageJ (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral (IV) joint torques at each vertebral level were found using principles of static equilibrium together with the segmental body mass data. Summing the torque contributions for each level above the required joint, allowed the cumulative joint torque at a particular level to be found. Since there is some uncertainty in the position of the coronal plane Instantaneous Axis of Rotation (IAR) for scoliosis patients, it was assumed the IAR was located in the centre of the IV disc. A sensitivity analysis was performed to see what effect the IAR had on the joint torques by moving it laterally 10mm in both directions. Results. The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint torques during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm being found in patient 13. Shifting the assumed IAR by 10mm towards the convexity of the spine, increased the joint torque at that level by a mean 9.0%, showing that calculated joint torques were moderately sensitive to the assumed IAR location. When the IAR midline position was moved 10mm away from the convexity of the spine, the joint torque reduced by a mean 8.9%. Conclusion. Coronal plane joint torques as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. This study provides new anthropometric reference data on vertebral level-by-level torso mass in AIS patients which will be useful for biomechanical models of scoliosis progression and treatment. However, the CT scans were performed in supine (no gravitational load on spine) and curve magnitudes are known to be smaller than those measured in standing.
Resumo:
Introduction: Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. This study used supine CT scans of AIS patients to measure segmental torso masses and explored the joint moments in the coronal plane, particularly at the apex of a scoliotic major curve. Methods: Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of 20 female AIS patients with right sided thoracic curves. The mean age was 15.0 ± 2.7 years and all curves were classified Lenke Type 1 with a mean Cobb angle 52 ± 5.9°. Image processing software, ImageJ (v1.45 NIH USA) was used to create reformatted coronal plane images, reconstruct vertebral level-by-level torso segments and subsequently measure the torso volume corresponding to each vertebral level. Segment mass was then determined by assuming a tissue density of 1.04x103 kg/m3. Body segment masses for the head, neck and arms were taken from published anthropometric data (Winter 2009). Intervertebral joint moments in the coronal plane at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres with the segmental body mass data. Results and Discussion: The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint moments during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm. The CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing, due to the absence of gravity acting on the spine. Hence, it can be expected that the moments produced by gravity in the standing individual will be greater than those calculated here.
Resumo:
Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data.1 Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc). The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing.2 Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.
Resumo:
Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity whose aetiology remains unclear. Studies suggest that gravitational forces in the standing position play an important role in scoliosis progression, therefore anthropometric data are required to develop biomechanical models of the deformity. Few studies have analysed the trunk by vertebral level and none have performed investigations of the scoliotic trunk. The aim of this study was to determine the centroid, thickness, volume and estimated mass, for sections of the trunk in Adolescent Idiopathic Scoliosis patients. Methods Existing low-dose Computed Tomography scans were used to estimate vertebral level-by-level torso masses for 20 female Adolescent Idiopathic Scoliosis patients. ImageJ processing software was used to analyse the Computed Tomography images and enable estimation of the segmental torso mass corresponding to each vertebral level. Findings The patients’ mean age was 15.0 (SD 2.7) years with mean major Cobb Angle of 52° (SD 5.9) and mean patient weight of 58.2 (SD 11.6) kg. The magnitude of torso segment mass corresponding to each vertebral level increased by 150% from 0.6kg at T1 to 1.5kg at L5. Similarly, the segmental thickness corresponding to each vertebral level from T1-L5 increased inferiorly from a mean 18.5 (SD 2.2) mm at T1 to 32.8 (SD 3.4) mm at L5. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) % which was close to values reported in previous literature. Interpretation This study provides new anthropometric reference data on segmental (vertebral level-by-level) torso mass in Adolescent Idiopathic Scoliosis patients, useful for biomechanical models of scoliosis progression and treatment.
Resumo:
Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data. Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc. The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing. Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.
Resumo:
This article examines a social media assignment used to teach and practice statistical literacy with over 400 students each semester in large-lecture traditional, fully online, and flipped sections of an introductory-level statistics course. Following the social media assignment, students completed a survey on how they approached the assignment. Drawing from the authors’ experiences with the project and the survey results, this article offers recommendations for developing social media assignments in large courses that focus on the interplay between the social media tool and the implications of assignment prompts.
Resumo:
In this paper free vibration characteristics of a centrally kinked cantilever beam of unit mass carrying masses at the kink (m(k)) and at the tip (m(t)) are analyzed. Frequency factors are presented for the first two modes for different combinations of m(k),m(t) and the kink angle delta. A relationship of the form f(m(k),m(t), delta) = m(k) + m(t)(4 + 10/3 cos delta+ 2/3 cos(2) delta)=const appears to give the same fundamental frequency for a given delta and different combinations of [m(k), m(t)]. Mode shapes as well as bending moments at the support and at the kink are also discussed. The utility of a discrete beam model in understanding the free vibration characteristics is also highlighted.
Resumo:
The topic of this study is the most renowned anthology of essays written in Literary Chinese, Guwen guanzhi, compiled and edited by Wu Chengquan (Chucai) and Wu Dazhi (Diaohou), and first published during the Qing dynasty, in 1695. Because of the low social standing of the compilers, their anthology remained outside the recommended study materials produced by members of the established literati and used for preparing students in the imperial civil-service examinations. However, since the end of the imperial era, Guwen guanzhi has risen to a position as the classical anthology par excellence. Today it is widely used as required or supplementary reading material of Literary Chinese in middle-schools both in Mainland China and on Taiwan. The goal of this study is to explain the persistent longevity of the anthology. So far, Guwen guanzhi has not been a topic of any published academic study, and the opinions expressed on it in various sources are widely discrepant. Through a comparative study with a dozen classical Chinese anthologies in use during the early Qing dynasty, this study reveals the extent to which the compilers of Guwen guanzhi modelled their work after other selections. Altogether 86 % of the texts in Guwen guanzhi originate from another Qing era anthology, Guwen xiyi, often copied character by character. However, the notes and commentaries are all different. Concentrating on the special characteristics unique to Guwen guanzhi—the commentaries and certain peculiarities in the selection of texts—this study then discusses the possible reasons for the popularity of Guwen guanzhi over the competing readers during the Qing era. Most remarkably, Guwen guanzhi put in practise the equalitarian, educational ideals of the Ming philosopher Wang Shouren (Yangming). Thus Guwen guanzhi suited the self-enlightenment needs of the ”subordinate classes”, in particular the rising middle-class comprised mainly of merchants. The lack of moral teleology, together with the compact size, relative comprehensiveness of the selection and good notes and comments, have made Guwen guanzhi well suited for the new society since the abolition of the imperial examination system. Through a content analysis, based on a sample of the texts, this study measures the relative emphasis on centralism and localism (both in concrete and spiritual terms) expressed in the texts of Guwen guanzhi. The analysis shows that the texts manifest some bias towards emphasising innate virtue on the expense of state-defined moral. This may reflect hidden critique towards intellectual oppression by the centralised imperial rule. During the early decades of the Qing era, such critique was often linked to Ming-loyalism. Finally, this study concludes that the kind of ”spiritual localism” that Guwen guanzhi manifests gives it the potential to undermine monolithic orthodoxy even in today’s Chinese societies. This study has progressed hand in hand with the translation of a selection of texts from Guwen guanzhi into Finnish, published by Gaudeamus Helsinki University Press: Jadekasvot – Valittuja tarinoita Kiinan muinaisajoilta (2005), Jadelähde – Valittuja kirjoituksia Kiinan keskiajalta (2007) and Jadepeili – Valittuja kirjoituksia keisarillisen Kiinan kulta-ajoilta (2008). All translations are critical editions, complete with extensive notation. The trilogy is the first comprehensive translation based on Guwen guanzhi in a European language.
Resumo:
Abstract is not available.
Resumo:
Large amplitude oscillations of cantilevered beams of variable cross-section, with concentrated masses along the span, are studied in this paper. The governing non-linear ordinary differential equation is solved by an averaging technique to obtain approximate solutions. Stability boundaries of the response are also investigated.
Resumo:
We attempt a comprehensive analysis of the low lying charm meson states which present several puzzles, including the poor determination of masses of several non-strange excited mesons. We use the well-determined masses of the ground states and the strange first excited states to 'predict' the mass of the non-strange first excited state in the framework of heavy hadron chiral perturbation theory, an approach that is complementary to the well-known analysis of Mehen and Springer. This approach points to values for the masses of these states that are smaller than the experimental determinations. We provide a critical assessment of these mass measurements and point out the need for new experimental information. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study is a pragmatic description of the evolution of the genre of English witchcraft pamphlets from the mid-sixteenth century to the end of the seventeenth century. Witchcraft pamphlets were produced for a new kind of readership semi-literate, uneducated masses and the central hypothesis of this study is that publishing for the masses entailed rethinking the ways of writing and printing texts. Analysis of the use of typographical variation and illustrations indicates how printers and publishers catered to the tastes and expectations of this new audience. Analysis of the language of witchcraft pamphlets shows how pamphlet writers took into account the new readership by transforming formal written source materials trial proceedings into more immediate ways of writing. The material for this study comes from the Corpus of Early Modern English Witchcraft Pamphlets, which has been compiled by the author. The multidisciplinary analysis incorporates both visual and linguistic aspects of the texts, with methodologies and theoretical insights adopted eclectically from historical pragmatics, genre studies, book history, corpus linguistics, systemic functional linguistics and cognitive psychology. The findings are anchored in the socio-historical context of early modern publishing, reading, literacy and witchcraft beliefs. The study shows not only how consideration of a new audience by both authors and printers influenced the development of a genre, but also the value of combining visual and linguistic features in pragmatic analyses of texts.
Resumo:
Lepton masses and mixing angles via localization of 5-dimensional fields in the bulk are revisited in the context of Randall-Sundrum models. The Higgs is assumed to be localized on the IR brane. Three cases for neutrino masses are considered: (a) The higher-dimensional neutrino mass operator (LH.LH), (b) Dirac masses, and (c) Type I seesaw with bulk Majorana mass terms. Neutrino masses and mixing as well as charged lepton masses are fit in the first two cases using chi(2) minimization for the bulk mass parameters, while varying the O(1) Yukawa couplings between 0.1 and 4. Lepton flavor violation is studied for all the three cases. It is shown that large negative bulk mass parameters are required for the right-handed fields to fit the data in the LH.LH case. This case is characterized by a very large Kaluza-Klein (KK) spectrum and relatively weak flavor-violating constraints at leading order. The zero modes for the charged singlets are composite in this case, and their corresponding effective 4-dimensional Yukawa couplings to the KK modes could be large. For the Dirac case, good fits can be obtained for the bulk mass parameters, c(i), lying between 0 and 1. However, most of the ``best-fit regions'' are ruled out from flavor-violating constraints. In the bulk Majorana terms case, we have solved the profile equations numerically. We give example points for inverted hierarchy and normal hierarchy of neutrino masses. Lepton flavor violating rates are large for these points. We then discuss various minimal flavor violation schemes for Dirac and bulk Majorana cases. In the Dirac case with minimal-flavor-violation hypothesis, it is possible to simultaneously fit leptonic masses and mixing angles and alleviate lepton flavor violating constraints for KK modes with masses of around 3 TeV. Similar examples are also provided in the Majorana case.
Resumo:
Planck scale lepton number violation is an interesting and natural possibility to explain nonzero neutrino masses. We consider such operators in the context of Randall-Sundrum (RS1) scenarios. Implementation of this scenario with a single Higgs localized on the IR brane (standard RS1) is not phenomenologically viable as they lead to inconsistencies in the charged lepton mass fits. In this paper we propose a setup with two Higgs doublets. We present a detailed numerical analysis of the fits to fermion masses and mixing angles. This model solves the issues regarding the fermion mass fits but solutions with consistent electroweak symmetry breaking are highly fine-tuned. A simple resolution is to consider supersymmetry in the bulk and a detailed discussion of which is provided. Constraints from flavor are found to be strong and minimal flavor violation (MFV) is imposed to alleviate them.