898 resultados para Marketing – Econometric models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines the short- and long-run impacts of timber prices and other factors affecting NIPF owners' timber harvesting and timber stocking decisions. The utility-based Faustmann model provides testable hypotheses of the exogenous variables retained in the timber supply analysis. The timber stock function, derived from a two-period biomass harvesting model, is estimated using a two-step GMM estimator based on balanced panel data from 1983 to 1991. Timber supply functions are estimated using a Tobit model adjusted for heteroscedasticity and nonnormality of errors based on panel data from 1994 to 1998. Results show that if specification analysis of the Tobit model is ignored, inconsistency and biasedness can have a marked effect on parameter estimates. The empirical results show that owner's age is the single most important factor determining timber stock; timber price is the single most important factor in harvesting decision. The results of the timber supply estimations can be interpreted using utility-based Faustmann model of a forest owner who values a growing timber in situ.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of various statistical models and commonly used financial indicators for forecasting securitised real estate returns are examined for five European countries: the UK, Belgium, the Netherlands, France and Italy. Within a VAR framework, it is demonstrated that the gilt-equity yield ratio is in most cases a better predictor of securitized returns than the term structure or the dividend yield. In particular, investors should consider in their real estate return models the predictability of the gilt-equity yield ratio in Belgium, the Netherlands and France, and the term structure of interest rates in France. Predictions obtained from the VAR and univariate time-series models are compared with the predictions of an artificial neural network model. It is found that, whilst no single model is universally superior across all series, accuracy measures and horizons considered, the neural network model is generally able to offer the most accurate predictions for 1-month horizons. For quarterly and half-yearly forecasts, the random walk with a drift is the most successful for the UK, Belgian and Dutch returns and the neural network for French and Italian returns. Although this study underscores market context and forecast horizon as parameters relevant to the choice of the forecast model, it strongly indicates that analysts should exploit the potential of neural networks and assess more fully their forecast performance against more traditional models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this dissertation is to use statistical tools to analyze specific financial risks that have played dominant roles in the US financial crisis of 2008-2009. The first risk relates to the level of aggregate stress in the financial markets. I estimate the impact of financial stress on economic activity and monetary policy using structural VAR analysis. The second set of risks concerns the US housing market. There are in fact two prominent risks associated with a US mortgage, as borrowers can both prepay or default on a mortgage. I test the existence of unobservable heterogeneity in the borrower's decision to default or prepay on his mortgage by estimating a multinomial logit model with borrower-specific random coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate of fatal crashes in Florida has remained significantly higher than the national average for the last several years. The 2003 statistics from the National Highway Traffic Safety Administration (NHTSA), the latest available, show a fatality rate in Florida of 1.71 per 100 million vehicle-miles traveled compared to the national average of 1.48 per 100 million vehicle-miles traveled. The objective of this research is to better understand the driver, environmental, and roadway factors that affect the probability of injury severity in Florida. ^ In this research, the ordered logit model was used to develop six injury severity models; single-vehicle and two-vehicle crashes on urban freeways and urban principal arterials and two-vehicle crashes at urban signalized and unsignalized intersections. The data used in this research included all crashes that occurred on the state highway system for the period from 2001 to 2003 in the Southeast Florida region, which includes the Miami-Dade, Broward and Palm Beach Counties.^ The results of the analysis indicate that the age group and gender of the driver at fault were significant factors of injury severity risk across all models. The greatest risk of severe injury was observed for the age groups 55 to 65 and 66 and older. A positive association between injury severity and the race of the driver at fault was also found. Driver at fault of Hispanic origin was associated with a higher risk of severe injury for both freeway models and for the two-vehicle crash model on arterial roads. A higher risk of more severe injury crash involvement was also found when an African-American was the at fault driver on two-vehicle crashes on freeways. In addition, the arterial class was also found to be positively associated with a higher risk of severe crashes. Six-lane divided arterials exhibited the highest injury severity risk of all arterial classes. The lowest severe injury risk was found for one way roads. Alcohol involvement by the driver at fault was also found to be a significant risk of severe injury for the single-vehicle crash model on freeways. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the significance of the econometric models in foreign exchange market, the purpose of this research is to give a closer examination on some important issues in this area. The research covers exchange rate pass-through into import prices, liquidity risk and expected returns in the currency market, and the common risk factors in currency markets. Firstly, with the significant of the exchange rate pass-through in financial economics, the first empirical chapter studies on the degree of exchange rate pass-through into import in emerging economies and developed countries in panel evidences for comparison covering the time period of 1970-2009. The pooled mean group estimation (PMGE) is used for the estimation to investigate the short run coefficients and error variance. In general, the results present that the import prices are affected positively, though incompletely, by the exchange rate. Secondly, the following study addresses the question whether there is a relationship between cross-sectional differences in foreign exchange returns and the sensitivities of the returns to fluctuations in liquidity, known as liquidity beta, by using a unique dataset of weekly order flow. Finally, the last study is in keeping with the study of Lustig, Roussanov and Verdelhan (2011), which shows that the large co-movement among exchange rates of different currencies can explain a risk-based view of exchange rate determination. The exploration on identifying a slope factor in exchange rate changes is brought up. The study initially constructs monthly portfolios of currencies, which are sorted on the basis of their forward discounts. The lowest interest rate currencies are contained in the first portfolio and the highest interest rate currencies are in the last. The results performs that portfolios with higher forward discounts incline to contain higher real interest rates in overall by considering the first portfolio and the last portfolio though the fluctuation occurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation proposes statistical methods to formulate, estimate and apply complex transportation models. Two main problems are part of the analyses conducted and presented in this dissertation. The first method solves an econometric problem and is concerned with the joint estimation of models that contain both discrete and continuous decision variables. The use of ordered models along with a regression is proposed and their effectiveness is evaluated with respect to unordered models. Procedure to calculate and optimize the log-likelihood functions of both discrete-continuous approaches are derived, and difficulties associated with the estimation of unordered models explained. Numerical approximation methods based on the Genz algortithm are implemented in order to solve the multidimensional integral associated with the unordered modeling structure. The problems deriving from the lack of smoothness of the probit model around the maximum of the log-likelihood function, which makes the optimization and the calculation of standard deviations very difficult, are carefully analyzed. A methodology to perform out-of-sample validation in the context of a joint model is proposed. Comprehensive numerical experiments have been conducted on both simulated and real data. In particular, the discrete-continuous models are estimated and applied to vehicle ownership and use models on data extracted from the 2009 National Household Travel Survey. The second part of this work offers a comprehensive statistical analysis of free-flow speed distribution; the method is applied to data collected on a sample of roads in Italy. A linear mixed model that includes speed quantiles in its predictors is estimated. Results show that there is no road effect in the analysis of free-flow speeds, which is particularly important for model transferability. A very general framework to predict random effects with few observations and incomplete access to model covariates is formulated and applied to predict the distribution of free-flow speed quantiles. The speed distribution of most road sections is successfully predicted; jack-knife estimates are calculated and used to explain why some sections are poorly predicted. Eventually, this work contributes to the literature in transportation modeling by proposing econometric model formulations for discrete-continuous variables, more efficient methods for the calculation of multivariate normal probabilities, and random effects models for free-flow speed estimation that takes into account the survey design. All methods are rigorously validated on both real and simulated data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing competition caused by globalization, high growth of some emerging markets and stagnation of developed economies motivate Consumer Packaged Goods (CPGs) manufacturers to drive their attention to emerging markets. These companies are expected to adapt their marketing activities to the particularities of these markets in order to succeed. In a country classified as emerging market, regions are not alike and some contrasts can be identified. In addition, divergences of marketing variables effect can also be observed in the different retail formats. The retail formats in emerging markets can be segregated in chain self-service and traditional full-service. Thus, understanding the effectiveness of marketing mix not only in country aggregated level data can be an important contribution. Inasmuch as companies aim to generate profits from emerging markets, price is an important marketing variable in the process of creating competitive advantage. Along with price, promotional variables such as in-store displays and price cut are often viewed as temporary incentives to increase short-term sales. Managers defend the usage of promotions as being the most reliable and fastest manner to increase sales and then short-term profits. However, some authors alert about sales promotions disadvantages; mainly in the long-term. This study investigates the effect of price and in-store promotions on sales volume in different regions within an emerging market. The database used is at SKU level for juice, being segregated in the Brazilian northeast and southeast regions and corresponding to the period from January 2011 to January 2013. The methodological approach is descriptive quantitative involving validation tests, application of multivariate and temporal series analysis method. The Vector-Autoregressive (VAR) model was used to perform the analysis. Results suggest similar price sensitivity in the northeast and southeast region and greater in-store promotion sensitivity in the northeast. Price reductions show negative results in the long-term (persistent sales in six months) and in-store promotion, positive results. In-store promotion shows no significant influence on sales in chain self-service stores while price demonstrates no relevant impact on sales in traditional full-service stores. Hence, this study contributes to the business environment for companies wishing to manage price and sales promotions for consumer brands in regions with different features within an emerging market. As a theoretical contribution, this study fills an academic gap providing a dedicated price and sales promotion study to contrast regions in an emerging market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to develop econometric models to better understand the economic factors affecting inbound tourist flows from each of six origin countries that contribute to Hong Kong’s international tourism demand. To this end, we test alternative cointegration and error correction approaches to examine the economic determinants of tourist flows to Hong Kong, and to produce accurate econometric forecasts of inbound tourism demand. Our empirical findings show that permanent income is the most significant determinant of tourism demand in all models. The variables of own price, weighted substitute prices, trade volume, the share price index (as an indicator of changes in wealth in origin countries), and a dummy variable representing the Beijing incident (1989) are also found to be important determinants for some origin countries. The average long-run income and own price elasticity was measured at 2.66 and 1.02, respectively. It was hypothesised that permanent income is a better explanatory variable of long-haul tourism demand than current income. A novel approach (grid search process) has been used to empirically derive the weights to be attached to the lagged income variable for estimating permanent income. The results indicate that permanent income, estimated with empirically determined relatively small weighting factors, was capable of producing better results than the current income variable in explaining long-haul tourism demand. This finding suggests that the use of current income in previous empirical tourism demand studies may have produced inaccurate results. The share price index, as a measure of wealth, was also found to be significant in two models. Studies of tourism demand rarely include wealth as an explanatory forecasting long-haul tourism demand. However, finding a satisfactory proxy for wealth common to different countries is problematic. This study indicates with the ECM (Error Correction Models) based on the Engle-Granger (1987) approach produce more accurate forecasts than ECM based on Pesaran and Shin (1998) and Johansen (1988, 1991, 1995) approaches for all of the long-haul markets and Japan. Overall, ECM produce better forecasts than the OLS, ARIMA and NAÏVE models, indicating the superiority of the application of a cointegration approach for tourism demand forecasting. The results show that permanent income is the most important explanatory variable for tourism demand from all countries but there are substantial variations between countries with the long-run elasticity ranging between 1.1 for the U.S. and 5.3 for U.K. Price is the next most important variable with the long-run elasticities ranging between -0.8 for Japan and -1.3 for Germany and short-run elasticities ranging between 0.14 for Germany and -0.7 for Taiwan. The fastest growing market is Mainland China. The findings have implications for policies and strategies on investment, marketing promotion and pricing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite a growing body of scientific research, there is still much uncertainty about the effects of marketing expenditures on the demand for pharmaceuticals. Recently it was found that higher marketing expenditures for a brand may reduce the price elasticity of demand, and hence allow firms to charge higher prices (Windmeijer et al [1]). In this study we reconsider the study by Windmeijer et al. We find that their econometric models are based on an incorrect assumption of homogeneous parameters across brands. As a consequence, our conclusions concerning the effects of pharmaceutical marketing are different from theirs.