1000 resultados para Mantle flow
Resumo:
Upper-mantle seismic anisotropy has been extensively used to infer both present and past deformation processes at lithospheric and asthenospheric depths. Analysis of shear-wave splitting (mainly from core-refracted SKS phases) provides information regarding upper-mantle anisotropy. We present average measurements of fast-polarization directions at 21 new sites in poorly sampled regions of intra-plate South America, such as northern and northeastern Brazil. Despite sparse data coverage for the South American stable platform, consistent orientations are observed over hundreds of kilometers. Over most of the continent, the fast-polarization direction tends to be close to the absolute plate motion direction given by the hotspot reference model HS3-NUVEL-1A. A previous global comparison of the SKS fast-polarization directions with flow models of the upper mantle showed relatively poor correlation on the continents, which was interpreted as evidence for a large contribution of ""frozen"" anisotropy in the lithosphere. For the South American plate, our data indicate that one of the reasons for the poor correlation may have been the relatively coarse model of lithospheric thicknesses. We suggest that improved models of upper-mantle flow that are based on more detailed lithospheric thicknesses in South America may help to explain most of the observed anisotropy patterns.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The knowledge of the anisotropic properties beneath the Iberian Peninsula and Northern Morocco has been dramatically improved since late 2007 with the analysis of the data provided by the dense TopoIberia broadband seismic network, the increasing number of permanent stations operating in Morocco, Portugal and Spain, and the contribution of smaller scale/higher resolution experiments. Results from the two first TopoIberia deployments have evidenced a spectacular rotation of the fast polarization direction (FPD) along the Gibraltar Arc, interpreted as an evidence of mantle flow deflected around the high velocity slab beneath the Alboran Sea, and a rather uniform N100 degrees E FPD beneath the central Iberian Variscan Massif, consistent with global mantle flow models taking into account contributions of surface plate motion, density variations and net lithosphere rotation. The results from the last Iberarray deployment presented here, covering the northern part of the Iberian Peninsula, also show a rather uniform FPD orientation close to N100 degrees E, thus confirming the previous interpretation globally relating the anisotropic parameters to the LPO of mantle minerals generated by mantle flow at asthenospheric depths. However, the degree of anisotropy varies significantly, from delay time values of around 0.5 s beneath NW Iberia to values reaching 2.0 sin its NE comer. The anisotropic parameters retrieved from single events providing high quality data also show significant differences for stations located in the Variscan units of NW Iberia, suggesting that the region includes multiple anisotropic layers or complex anisotropy systems. These results allow to complete the map of the anisotropic properties of the westernmost Mediterranean region, which can now be considered as one of best constrained regions worldwide, with more than 300 sites investigated over an area extending from the Bay of Biscay to the Sahara platform. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Mantle flow dynamics can cause preferential alignment of olivine crystals that results in anisotropy of physical properties. To interpret anisotropy in mantle rocks, it is necessary to understand the anisotropy of olivine single crystals. We determined anisotropy of magnetic susceptibility (AMS) for natural olivine crystals. High-field AMS allows for the isolation of the anisotropy due to olivine alone. The orientations of the principal susceptibility axes are related to the olivine’s crystallographic structure as soon as it contains >3 wt % FeO. The maximum susceptibility is parallel to the c axis both at room temperature (RT) and at 77 K. The orientation of the minimum axis at RT depends on iron content; it is generally parallel to the a axis in crystals with 3–5 wt % FeO, and along b in samples with 6–10 wt % FeO. The AMS ellipsoid is prolate and the standard deviatoric susceptibility, k0, is on the order of 8*10210 m3/kg for the samples with <1wt % FeO, and ranges from 3.1*1029 m3/kg to 5.7*1029 m3/kg for samples with 3–10 wt % FeO. At 77 K, the minimum susceptibility is along b, independent of iron content. The shape of the AMS ellipsoid is prolate for samples with <5 wt % FeO, but can be prolate or oblate for higher iron content. The degree of anisotropy increases at 77 K with p0 7757.160.5. The results from this study will allow AMS fabrics to be used as a proxy for olivine texture in ultramafic rocks with high olivine content.
Resumo:
IPOD Leg 49 recovered basalts from 9 holes at 7 sites along 3 transects across the Mid-Atlantic Ridge: 63°N (Reykjanes), 45°N and 36°N (FAMOUS area). This has provided further information on the nature of mantle heterogeneity in the North Atlantic by enabling studies to be made of the variation of basalt composition with depth and with time near critical areas (Iceland and the Azores) where deep mantle plumes are thought to exist. Over 150 samples have been analysed for up to 40 major and trace elements and the results used to place constraints on the petrogenesis of the erupted basalts and hence on the geochemical nature of their source regions. It is apparent that few of the recovered basalts have the geochemical characteristics of typical "depleted" midocean ridge basalts (MORB). An unusually wide range of basalt compositions may be erupted at a single site: the range of rare earth patterns within the short section cored at Site 413, for instance, encompasses the total variation of REE patterns previously reported from the FAMOUS area. Nevertheless it is possible to account for most of the compositional variation at a single site by partial melting processes (including dynamic melting) and fractional crystallization. Partial melting mechanisms seem to be the dominant processes relating basalt compositions, particularly at 36°N and 45°N, suggesting that long-lived sub-axial magma chambers may not be a consistent feature of the slow-spreading Mid-Atlantic Ridge. Comparisons of basalts erupted at the same ridge segment for periods of the order of 35 m.y. (now lying along the same mantle flow line) do show some significant inter-site differences in Rb/Sr, Ce/Yb, 87Sr/86Sr, etc., which cannot be accounted for by fractionation mechanisms and which must reflect heterogeneities in the mantle source. However when hygromagmatophile (HYG) trace element levels and ratios are considered, it is the constancy or consistency of these HYG ratios which is the more remarkable, implying that the mantle source feeding a particular ridge segment was uniform with respect to these elements for periods of the order of 35 m.y. and probably since the opening of the Atlantic. Yet these HYG element ratios at 63°N are very different from those at 45°N and 36°N and significantly different from the values at 22°N and in "MORB". The observed variations are difficult to reconcile with current concepts of mantle plumes and binary mixing models. The mantle is certainly heterogeneous, but there is not simply an "enriched" and a "depleted" source, but rather a range of sources heterogeneous on different scales for different elements - to an extent and volume depending on previous depletion/enrichment events. HYG element ratios offer the best method of defining compositionally different mantle segments since they are little modified by the fractionation processes associated with basalt generation.
Resumo:
Mineral compositions of residual peridotites collected at various locations in the Mid-Atlantic Ridge south of the Kane transform (MARK area) are consistent with generally smaller degrees of melting in the mantle near the large offset Kane transform than near the other, small offset, axial discontinuities in the area. We propose that this transform fault effect is due to along-axis variations in the final depth of melting in the subaxial mantle, reflecting the colder thermal regime of the ridge near the Kane transform. Calculations made with a passive mantle flow regime suggest that these along-axis variations in the final depth of melting would not produce the full range of crustal thickness variations observed in the MARK area seismic record. It is therefore likely that the transform fault effect in the MARK area is combined with other mechanisms capable of producing crustal thickness variations, such as along-axis melt migration, the trapping of part of the magma in a cold mantle root beneath the ridge, or active mantle upwelling.
Resumo:
The geochemistry of basalts recovered from seven sites in the North Atlantic is described with particular reference to minor elements. Three sites (407, 408, and 409) along the same mantle flow line, transverse to the Reykjanes Ridge at about 63°N, provide information on the composition of basalts erupted over a 34-m.y. interval between 2.3 and 36 m.y. ago. At Site 410, at 45°N, penetration into 10 m.y.-old crust west of the ridge axis permits comparisons with young basalts dredged from the median valley at 45°N. Three sites in the FAMOUS area at about 36°N provided material from very young (1 m.y.) basaltic crust (Site 411), and material to test the geochemical coherence of basalts of different ages (1.5 and 3.5 m.y.) on either side of a fracture zone (Sites 412 and 413). These sites complement earlier data from dredged and drilled sites (Leg 37) in the FAMOUS area. At Site 407, four geochemically distinct basalt units occur, with different normative and rare-earth element (REE) characteristics, and there is a clear correlation with magnetic stratigraphy. Yet there is a remarkable consistency in incompatible element ratios between these units, indicating derivation from an essentially similar mantle source. The basalts from the younger sites, 408 and 409, show a similar range of normative and REE variation, but incompatible element ratios are identical to those at Site 407, indicating that basalts at all three sites were produced from a mantle source which was geochemically relatively uniform. Rare-earth differences between the basalts can be interpreted in terms of variations in the degree and depth of partial melting causing HREE (+Y) retention in the source, although there may be some inter-site differences with respect to REE. A similar picture is presented at 45°N. Apparently a range of tholeiitic, transitional, and alkalic basalts were being erupted 10 m.y. ago, which have almost identical geochemical characteristics to those recently erupted in the median valley at 45°N. Incompatible element ratios are markedly different from those recorded at the Reykjanes Ridge. Basalts recovered from the FAMOUS sites are geochemically similar to previous samples recovered from the FAMOUS area, and their incompatible element ratios are similar, but not identical, to those at 45°N. However, total trace element levels are consistently lower than in 45°N basalts, which might imply smaller degrees of partial melting and/or greater depths of magma generation at 45°N, or higher trace element levels in the mantle source at 45°N. Few of the basalts recovered on Leg 49 have the geochemical characteristics of typical "MORB" (e.g., Nazca Plate, Leg 34). The data strongly support models invoking geochemical inhomogeneity in the source regions of basalts produced at the Mid-Atlantic Ridge. However, the data also introduce an additional time factor into such models and demonstrate the uniformity of the mantle source at a particular ridge sector (over periods in excess of 30 m.y.), while emphasizing the marked differences along the ridge. Mixing models invoking "depleted" and "enriched" mantle sources would seem to be inadequate to account for the observed variations.
Resumo:
The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.
Resumo:
We have conducted a P and S receiver functions [PRFs and SRFs] analysis for 19 seismic stations on the Iberia and western Mediterranean. In the transition zone [TZ] the PRFs analysis reveals a band [from Gibraltar to Balearic] increased by 10-20 km relative to the standard 250 km. The TZ thickness variations are strongly correlated with the P660s times in PRFs. We interpret the variable depth of the 660-km discontinuity as an effect of subduction. Over the anomalous TZ we found a reduced velocity zone in the upper mantle. Joint inversion of PRFs and SRFs reveals a subcrustal high S velocity lid and an underlying LVZ. A reduction of the S velocity in the LVZ is less than 10%. The Gutenberg discontinuity is located at 65±5 km, but in several models sampling the Mediterranean, the lid is missing or its thickness is reduced to ~30 km. In the Gibraltar and North Africa this boundary is located at ~100 km. The lid Vp/Vs beneath Betics is reduced relative to the standard 1.8. Another evidence of the Vp/Vs anomaly is provided by S410p phase late arrivals in the SRFs. The azimuthal anisotropy analysis with a new technology was conducted at 5 stations and at 2 groups of stations. The fast direction in the uppermost mantle layer is ~90º in Iberian Massif. In Balearic is in the azimuth of ~120º. At a depth of ~60 km the direction becomes 90º. Anisotropy in the upper layer can be interpreted as frozen, whereas anisotropy in the lower layer is active, corresponding to the present-day or recent flow. The effect of the asthenosphere in the SKS splitting is much larger than the effect of the subcrustal lithosphere.
Resumo:
The localization of magma melting areas at the lithosphere bottom in extensional volcanic domains is poorly understood. Large polygenetic volcanoes of long duration and their associated magma chambers suggest that melting at depth may be focused at specific points within the mantle. To validate the hypothesis that the magma feeding a mafic crust, comes from permanent localized crustal reservoirs, it is necessary to map the fossilized magma flow within the crustal planar intrusions. Using the AMS, we obtain magmatic flow vectors from 34 alkaline basaltic dykes from São Jorge, São Miguel and Santa Maria islands in the Azores Archipelago, a hot-spot related triple junction. The dykes contain titanomagnetite showing a wide spectrum of solid solution ranging from Ti-rich to Ti-poor compositions with vestiges of maghemitization. Most of the dykes exhibit a normal magnetic fabric. The orientation of the magnetic lineation k1 axis is more variable than that of the k3 axis, which is generally well grouped. The dykes of São Jorge and São Miguel show a predominance of subhorizontal magmatic flows. In Santa Maria the deduced flow pattern is less systematic changing from subhorizontal in the southern part of the island to oblique in north. These results suggest that the ascent of magma beneath the islands of Azores is predominantly over localized melting sources and then collected within shallow magma chambers. According to this concept, dykes in the upper levels of the crust propagate laterally away from these magma chambers thus feeding the lava flows observed at the surface.
Resumo:
At subduction zones, oceanic lithosphere that has interacted with sea water is returned to the mantle, heats up during descent and releases fluids by devolatilization of hydrous minerals. Models for the formation of magmas feeding volcanoes above subduction zones require largescale transport of these fluids into overlying mantle wedges(1-3). Fluid flow also seems to be linked to seismicity in subducting slabs. However, the spatial and temporal scales of this fluid flow remain largely unknown, with suggested timescales ranging from tens to tens of thousands of years(3-5). Here we use the Li-Ca-Sr isotope systems to consider fluid sources and quantitatively constrain the duration of subduction-zone fluid release at similar to 70 km depth within subducting oceanic lithosphere, now exhumed in the Chinese Tianshan Mountains. Using lithium-diffusion modelling, we find that the wall-rock porosity adjacent to the flowpath of the fluids increased ten times above the background level. We show that fluids released by devolatilization travelled through the slab along major conduits in pulses with durations of about similar to 200 years. Thus, although the overall slab dehydration process is continuous over millions of years and over a wide range of pressures and temperatures, we conclude that the fluids produced by dehydration in subducting slabs are mobilized in short-lived, channelized fluid-flow events.
Resumo:
The origin and evolution of CO2 inclusions and calcite veins in peridotite xenoliths of the Pannonian Basin, Hungary, were investigated by means of petrographic investigation and stable isotope analyses. The fluid inclusions recovered in paragenetic olivine and clinopyroxene belong to distinct populations: type A (texturally early) inclusions with regular shapes (often with negative crystal forms) forming intragranular trails, type B (texturally late) inclusions defining randomly oriented trails that reach grain boundaries Type B inclusions are often associated with silicate melt (type C) inclusions Stable carbon isotope compositions in inclusion-hosted CO2 were obtained by vacuum crushing followed by conventional dual inlet as well as continuous flow mass spectrometry in order to eliminate possible lab artifacts. Olivines, clino- and orthopyroxenes of the host peridotite have oxygen isotope compositions from 5.3 to 6.0 parts per thousand (relative to V-SMOW). without any relationship with xenolith texture. Some of the xenoliths contained calcite in various forms veins and infillings in silicate globules in veins, secondary carbonate veins filling cracks and metasomatic veins with diffuse margins The former two carbonate types have delta C-13 values around -13 parts per thousand (relative to V-PDB) and low Sr contents (<05 wt %), whereas the third type,veins with high-temperature metasomatic features have a delta C-13 value of -5 0 parts per thousand and high Sr contents up to 34 wt.% In spite of the mantle-like delta C-13 value and the unusually high Sr content typical for mantle-derived carbonate, trace element compositions have proven a crustal origin. This observation supports the conclusions of earlier studies that the carbonate melt droplets found on peridotite xenoliths in the alkaline basalts represent mobilized sedimentary carbonate. The large delta C-13 range and the C-12-enrichment in the carbonates can be attributed to devolanlization of the migrating carbonate or infiltration of surficial fluids containing C-12-rich dissolved carbon Carbon isotope compositions of inclusion-hosted CO2 range from -17 8 to -4.8 parts per thousand (relative to V-PDB) with no relation to the amount of CO2 released by vacuum crushing. Low-delta C-13 values measured by stepwise heating under vacuum suggest that the carbon component is pristine and not related to surficial contamination, and that primary mantle fluids with delta C-13 values around -5 parts per thousand were at least partly preserved in the xenoliths Tectonic reworking and heating by the basaltic magma resulted in partial CO2 release and local C-13-depletion. (C) 2010 Elsevier B V All rights reserved
Resumo:
The influence of second phases (e.g., pyroxenes) on olivine grain size was studied by quantitative microfabric analyses of samples of the Hilti massif mantle shear zone (Semail ophiolite, Oman). The microstructures range from porphyroclastic tectonites to ultramylonites, from outside to the center of the shear zone. Starting at conditions of ridge-related flow, they formed under continuous cooling leading to progressive strain localization. The dependence of the average olivine grain size on the second-phase content can be split into a second-phase controlled and a dynamic recrystallization-controlled field. In the former, the olivine grain size is related to the ratio between the second-phase grain size and volume fraction (Zener parameter). In the latter, dynamic recrystallization manifested by a balance between grain growth and grain size reduction processes yields a stable olivine grain size. In both fields the average olivine and second-phase grain size decreases with decreasing temperature. Combining the microstructural information with deformation mechanism maps suggests that the porphyroclastic tectonites (similar to 1100 degrees C) and mylonites (similar to 800 degrees C) formed under the predominance of dislocation creep. Since olivine-rich layers are intercalated with layer parallel, polymineralic bands in the mylonites, nearly equiviscous conditions can be assumed. In the ultramylonites, diffusion creep represents the major deformation mechanism in the polymineralic layers. It is this switch in deformation mechanism from dislocation creep to diffusion creep that forces strain to localize in the fine-grained polymineralic domains at low temperatures (<similar to 700 degrees C), underlining the role of the second phases on strain localization in cooling mantle rocks.
Resumo:
The implications are discussed of acceleration of magnetospheric ions by reflection off two magnetopause Alfvén waves, launched by the reconnection site into the inflow regions on both sides of the boundary. The effects of these waves on the ion populations, predicted using the model described by Lockwood et al. [1996], offer a physical interpretation of all the various widely used classifications of precipitation into the dayside ionosphere, namely, central plasma sheet, dayside boundary plasma sheet (BPS), void, low-latitude boundary layer (LLBL), cusp, mantle, and polar cap. The location of the open-closed boundary and the form of the convection flow pattern are discussed in relation to the regions in which these various precipitations are typically found. Specifically, the model predicts that both the LLBL and the dayside BPS precipitations are on newly opened field lines and places the convection reversal within the LLBL, as is often observed. It is shown that this offers solutions to a number of paradoxes and problems that arise if the LLBL and BPS precipitations are thought of as being on closed field lines. This model is also used to make quantitive predictions of the longitudinal extent and latitudinal width of the cusp, as a function of solar wind density.