163 resultados para Malt
Resumo:
Because of epidemics of Fusarium head blight (FHB; caused by Fusarium graminearum Schwabe [teleomorph Gibberella zeae (Schwein.) Petch]) in the northern Great Plains of the United States and Canada in the past two decades, malting barley breeders have been forced to use nonadapted barley (Hordeum vulgare L.) accessions as sources of FHB resistance. Many of the resistant accessions are from East Asia, and limited information is available on their genetic diversity and malt quality. The objectives of this study were to determine the genetic diversity among 30 East Asian accessions and two North American cultivars. Genetic diversity was based on 49 simple-sequence repeat markers. All accessions were tested for barley grain brightness; protein content; 1,000-kernel weight; malting loss; fine-grind malt extract; content of plump kernels, free amino nitrogen, soluble protein, and wort beta-glucan; the Kolbach index (i.e., the ratio of malt soluble protein to malt total protein); a-amylase activity; diastatic power; won color; and wort viscosity. A few accessions had equal quality compared with Harrington and Conlon barley for individual traits but not for all. Qing 2, Mokkei 93-78, and Nitakia 48 could be excellent sources for increased malt extract; Nitakia 48 is a possible source for low wort viscosity; and Mokkei 93-78 and Nitakia 48 are putative sources of low beta-glucan content. The cluster analyses also implied that the malt quality of an accession cannot be predicted based on the country where it was developed.
Resumo:
Microbes have a decisive role in the barley-malt-beer chain. A major goal of this thesis was to study the relationships between microbial communities and germinating grains during malting. Furthermore, the study provided a basis for tailoring of malt properties with natural, malt-derived microbes. The malting ecosystem is a dynamic process, exhibiting continous change. The first hours of steeping and kilning were the most important steps in the process with regard to microbiological quality. The microbial communities consisting of various types of bacteria, yeasts and filamentous fungi formed complex biofilms in barley tissues and were well-protected. Inhibition of one microbial population within the complex ecosystem led to an increase of non-suppressed populations, which must be taken into account because a shift in microbial community dynamics may be undesirable. Both bacterial and fungal communities should be monitored simultaneously. Using different molecular approaches we showed that the diversity of microbes in the malting ecosystem was greater than expected. Even some new microbial groups were found in the malting ecosystem. Suppression of Gram-negative bacteria during steeping was advanategous for grain germination and malt brewhouse performance. Fungal communities including both filamentous fungi and yeasts significantly contributed to the production of microbial beta-glucanases and xylanases, and were also involved in proteolysis. Well-characterized lactic acid bacteria (Lactobacillus plantarum VTT E-78076 and Pediococcus pentosaceus VTT E-90390) proved to be an effective way of balancing the microbial communities in malting. Furthermore, they had positive effects on malt characteristics and notably improved wort separation. Previously the significance of yeasts in the malting ecosystem has been largely underestimated. This study showed that yeast community was an important part of the industrial malting ecosystem. Yeasts produced extracellular hydrolytic enzymes with a potentially positive contribution to malt processability. Furthermore, several yeasts showed strong antagonistic activity against field and storage moulds. Addition of a selected yeast culture (Pichia anomala VTT C-04565) into steeping restricted Fusarium growth and hydrophobin production and thus prevented beer gushing. Addition of P. anomala C565 into steeping water tended to retard wort filtration, but the filtration was improved when the yeast culture was combined with L. plantarum E76. The combination of different microbial cultures offers a possibility to use ther different properties, thus making the system more robust. Improved understanding of complex microbial communities and their role in malting enables a more controlled process management and the production of high quality malt with tailored properties
Resumo:
Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(center dot+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(center dot+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health.
Resumo:
Aqueous extracts were prepared from five barley crystal malts (color range 15-440 degrees EBC, European Brewing Convention units). Antioxidant activity was determined by using the 2,2'-azinobis(3-ethylbenothiazoline-6-sulfonic acid) (ABTS(.+)) radical cation scavenging method. Antioxidant activity increased with increasing color value although the rate of increase decreased with increasing color value. Color was measured in CIELAB space. Extracts of the 15, 23, and 72 degrees EBC malts followed the same dilution pathway as did the 148 degrees EBC sample at higher dilution levels, indicating that they could each be used to give the same color by appropriate dilution. The 440 degrees EBC sample followed a different dilution pathway, indicating that different compounds were responsible for color in this extract. Fifteen selected volatile compounds were monitored using gas chromatography/mass spectrometry (GC/MS). Levels of methylpropanal, 2-methylbutanal, and 3-methylbutanal were highest for the 72 degrees EBC sample. When odor threshold values of the selected compounds were taken into account, 3-methylbutanal was the most important contributor to flavor., Relationships between levels of the lipid oxidation products, hexanal and (E)-2-nonenal, and antioxidant activity were complex, and increasing antioxidant activity for samples in the range of 15-148 degrees EBC did-not result in reduced levels of these lipid-derived compounds. When different colored malt extracts were diluted to give the same a* and b* values, calculated antioxidant activity and amounts of 3-methylbutanal, hexanal, and (E)-2-nonenal decreased with increasing degrees EBC value.
Resumo:
The antioxidant activity and phenolic composition of brewer's spent grain (BSG) extracts obtained by microwave-assisted extraction from twomalt types (light and darkmalts) were investigated. The total phenolic content (TPC) and antioxidant activity among the light BSG extracts (pilsen, melano, melano 80 and carared)were significantly different (p b 0.05) compared to dark extracts (chocolate and black types), with the pilsen BSG showing higher TPC (20 ± 1 mgGAE/g dry BSG). In addition, the antioxidant activity assessed by 2,2-diphenyl- 1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and deoxyribose assays decreased as a result of increasing kilning temperatures in the following order: pilsen N melano N melano 80 N carared N chocolate N black. HPLC-DAD/ESI-MS/MS analysis indicated the presence of phenolic acids, such as ferulic, p-coumaric and syringic acids, as well as several isomeric ferulate dehydrodimers and one dehydrotrimer. Chocolate and black extracts, obtained frommalts submitted to the highest kilning temperatures, showed the lowest levels of ferulic and p-coumaric acids. These results suggested that BSG extracts from pilsen malt might be used as an inexpensive and good natural source of antioxidants with potential interest for the food, pharmaceutical and/or cosmetic industries after purification.
Resumo:
A 67-year-old woman was referred for staging of a mucosa-associated lymphoid tumor lymphoma involving the left conjunctiva. CT scan had shown paravertebral and pelvic masses, and a breast nodule. FDG PET/CT demonstrated moderately increased uptake in the left ocular conjunctiva and confirmed the paravertebral and pelvic masses and the breast nodule. Moreover, abnormal FDG uptake was shown in 2 breast nodules, the flank, the gluteus maximus, and the gastric cardia. The patient received 6 cycles of rituximab-bendamustine chemotherapy with a complete clinical and metabolic response at the 6-month follow-up PET/CT and remained relapse-free without visual acuity problem after a 36-month follow-up.
Resumo:
The aim of this study was to investigate the effect of kilning and roasting temperatures on antioxidant activity of malt model systems prepared from combinations of glucose, proline, and ferulic acid. Model systems (initial a(w) = 0.09, 6 % moisture) were heated at 60 degrees C for up to 24 h, at 90 degrees C for up to 120 min, and at 220 degrees C for up to 15 min. The antioxidant activity of the glucose-proline-ferulic acid model system increased significantly on heating at 60 degrees C; for 24 h or at 90 degrees C for 120 min. In contrast, the glucose-proline, ferulic acid-glucose, and ferulic acid-proline systems presented either nonsignificantly increased or unchanged antioxidant activity. The antioxidant activity of both the glucose-proline-ferulic acid and glucose-proline model systems increased significantly after heating at 220 degrees C for 10 min, followed by a significant decrease at 15 min. The data suggest that (1) at 60 degrees C, ferulic acid reacts with Maillard reaction products, resulting in a significant increase in antioxidant activity; (2) at 90 degrees C, the antioxidant activity of the glucose-proline-ferulic system comes from both ferulic acid and Maillard reaction products; and (3) at 220 degrees C, the major contributors to antioxidant activity in glucose-proline-ferulic acid and glucose-proline systems are glucose-proline reaction products.
Resumo:
The aim of this study was to evaluate the survivability of Bifidobacterium breve NCIMB 702257 in a three malt-based media supplemented with cysteine and yeast extract, and to determine the protective effect of these growth factors. A number of parameterised mathematical models were used to predict of kinetics of viability and total acidity during storage at different temperatures. Results demonstrated a good fit to the experimental mathematical model. The Arrhenius equations showed only reasonable fits and the polynomial plots contained a large area without data between 4 and 25 degrees C. In addition, it was shown that cysteine promotes growth and acid production by bifidobacteria, but does not extend survivability. On the other hand, increasing the yeast extract content of the fermentation media enhances the survivability of B. breve. To our knowledge, this is the first study to address the modelling of the survivability of probiotic bacteria in a cereal based fermentation media at different temperatures, introducing a more quantitative approach to the study of the shelf-life of a probiotic product. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Free phenolic acids were extracted from a laboratory-produced sample of green malt. Aliquots of the phenolic acid extract were heated from 25 to 110°C over 27 h, representative of a commercial kilning regime. Samples were taken at regular intervals throughout heating and were assessed for changes in antioxidant activity by both the 2,2(prime)-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical-cation scavenging (ABTS(^•+)) and the ferric-reducing antioxidant potential (FRAP) assays. Changes in the profile of the phenolic acids of the extracts were determined by HPLC. Overall, there was a decrease in both antioxidant activity level and the level of phenolic acids, but as the temperature increased from 80 to 100°C, there was an increase in both the antioxidant activity level and the level of detected phenolic acids.
Resumo:
Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(center dot+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(center dot+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health.
Resumo:
We have studied the kinetics of transcriptional initiation and activation at the malT and malTp1 promoters of Escherichia coli using UV laser footprinting. Contrary to previous studies and because of the very rapid signal acquisition by this technique, we can obtain structural information about true reaction intermediates of transcription initiation. The consequences of adding a transcriptional activator, the cAMP receptor protein/cAMP complex (CRP), are monitored in real time, permitting us to assign specific interactions to the activation of discrete steps in transcription initiation. Direct protein–protein contacts between CRP and the RNA polymerase appeared very rapidly, followed by DNA melting around the −10 hexamer. CRP slightly increased the rate of this isomerization reaction but, more importantly, favored the establishment of additional contacts between the DNA upstream of the CRP binding site and RNA polymerase subsequent to open complex formation. These contacts make a major contribution to transcriptional activation by stabilizing open forms of the promoter complex, thereby indirectly accelerating promoter escape. The ensemble of the kinetic, structural signals demonstrated directly that CRP exerts most of its activating effects on the late stages of transcriptional initiation at the malT promoter.