982 resultados para Magnetic films and multilayers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The requirements for metrology of magnetostriction in complex multilayers and on whole wafers present challenges. An elegant technique based on radius of curvature deformation of whole wafers in a commercial metrology tool is described. The method is based on the Villari effect through application of strain to a film by introducing a radius of curvature. Strain can be applied tensilely and compressively depending on the material. The design, while implemented on 3'' wafers, is scalable. The approach removes effects arising from any shape anisotropy that occurs with smaller samples, which can lead to a change in magnetic response. From the change in the magnetic anisotropy as a function of the radius, saturation magnetostriction ?s can be determined. Dependence on film composition and film thickness was studied to validate the radius of curvature approach with other techniques. ?s decreases from positive values to negative values through an increase in Ni concentration around the permalloy composition, and ?s also increases with a decrease in film thickness, in full agreement with previous reports. We extend the technique by demonstrating the technique applied to a multi-layered structure. These results verify the validity of the method and are an important step to facilitate further work in understanding how manipulation of multilayered films can offer tailored magnetostriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we use magnetic resonant x-ray diffraction to study the magnetic properties of a 1.5 mu m EuTe film and an EuTe/PbTe superlattice (SL). The samples were grown by molecular beam epitaxy on (111) oriented BaF(2) substrates. The measurements were made at the Eu L(2) absorption edge, taking profit of the resonant enhancement of more than two orders in the magnetically diffracted intensity. At resonance, high counting rates above 11000 cps were obtained for the 1.5 gm EuTe film, allowing to check for the type II antiferromagnetic order of EuTe. An equal population of the three possible in-plane magnetic domains was found. The EuTe/PbTe SL magnetic peak showed a satellite structure, indicating the presence of magnetic correlations among the 5 ML (monolayers) EuTe layers across the 15 ML PbTe non-magnetic spacers. The temperature dependence of the integrated intensities of the film and the SL yielded different Neel temperatures T(N). The lower T(N) for the SL is explained considering the higher influence of the surface atoms, with partial bonds lost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical behaviours of CuFe thin films and multilayers at micron scales were investigated by microcompression and nanoindentation tests. Experimental and modelling results provide essential understanding on the extrinsic size effects in polycrystalline metallic multilayers, which is critical for optimising mechanical properties of thin films and multilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcompression tests were performed to determine the mechanical behavior of nano-crystalline Cu/Fe and Fe/Cu multilayers, as well as monolithic Cu and Fe thin films. The results show that the micropillars of pure Cu thin film bulge out under large compressive strains without failure, while those of pure Fe thin film crack near the top at low compressive strains followed by shear failure. For Cu/Fe and Fe/Cu multilayers, the Cu layers accommodate the majority of plastic deformation, and the geometry constraints imposed by Fe layers exaggerates the bulging in the Cu layers. However, the existence of ductile Cu layers does not improve the overall ductility of Cu/Fe and Fe/Cu multilayers. Cracking in the Fe layers directly lead to the failure of the multilayer micropillars, although the Cu layers have very good ductility. The results imply that suppressing the cracking of brittle layers is more important than simply adding ductile layers for improving the overall ductility of metallic multilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic strain gradients can influence the work-hardening behaviour of metals due to the accumulation of geometrically necessary discolations at the micron/submicron scale. A finite element model based on the conventional theory of mechanism-based strain-gradient plasticity has been developed to simulate the micropillar compression of Cu–Fe thin films and multilayers. The modelling results show that the geometric constraints lead to inhomogeneous deformation in the Cu layers, which agrees well with the bulging of Cu layers observed experimentally. Plastic strain gradients develop inside the individual layers, leading to extra work-hardening due to the accumulation of geometrically necessary dislocations. In the multilayer specimens, the Cu layers deform more severely than the Fe layers, resulting in the development of tensile stresses in the Fe layers. It is proposed that these tensile stresses are responsible for the development of micro-cracks in the Fe layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first fabrication of self-doped La1-xMnO3-delta films which are unique among the other La(1-x)M(x)MnO(3) (M = Ca, Ba and Pb) thin films showing giant magnetoresistance is reported. Ag-doped La0.7MnO3-delta films were grown on LaAlO3[100] substrates. These films show ferromagnetic and metal-insulator transition at 220 K and exhibit giant magnetoresistance (GMR) with Delta R/R(o) = 85% and Delta R/R(H) > 550%. Without silver addition these self-doped films are non-magnetic, Enhancement in GMR up to 8% has been observed in superlattices having alternate magnetic and non-magnetic La1-xMnO3-delta layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Films of isotropic nanocrystalline Pd(80)Co(20) alloys were obtained by electrodeposition onto brass substrate in plating baths maintained at different pH values. Increasing the pH of the plating bath led to an increase in mean grain size without inducing significant changes in the composition of the alloy. The magnetocrystalline anisotropy constant was estimated and the value was of the same order of magnitude as that reported for samples with perpendicular magnetic anisotropy. First order reversal curve (FORC) analysis revealed the presence of an important component of reversible magnetization. Also, FORC diagrams obtained at different sweep rate of the applied magnetic field, revealed that this reversible component is strongly affected by kinetic effect. The slight bias observed in the irreversible part of the FORC distribution suggested the dominance of magnetizing intergrain exchange coupling over demagnetizing dipolar interactions and microstructural disorder. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental results show that the exchange coupling field of NiFe/FeMn for Ta/ NiFe/FeMn/Ta multilayers is higher than that for the spin valve multilayers Ta/NiFe/Cu/NiFe/FeMn/ Ta. In order to find out the reason, the composition and chemical states at the surfaces of Ta(12nm)/ NiFe(7nm), Ta(12nm)/NiFe(7nm)/Cu(4nm) and Ta(12nm)/NiFe(7nm)/Cu(3nm)/NiFe(5nm) were studied using the X-ray photoelectron spectroscopy (XPS). The results show that no elements from lower layers float out or segregate to the surface for the first and second samples. However, Cu atoms segregate to the surface of Ta(12nm)/NiFe(7nm)/Cu(3nm)/NiFe(5nm) multilayers, i.e. Cu atoms segregate to the NiFe/FeMn interface for Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers. We believe that the presence of Cu atoms at the interface of NiFe/FeMn is one of the important factors causing the exchange coupling field of Ta/NiFe/FeMn/Ta multilayers to be higher than that of Ta/NiFe/Cu/NiFe/ FeMn/Ta multilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the application of polyelectrolyte multilayer (PEM) coated metal slides in enhancing fluorescence signal. We observed around eight-fold enhancement in fluorescence for protein incubated on PEM coated on aluminium mirror surface with respect to that of functionalized bare glass slides. The fluorescence intensities were also compared with commercially available FAST (R) slides (Whatman) offering 3D immobilization of proteins and the results were found to be comparable. We also showed that PEM coated on low-cost and commonly available aluminium foils also results in comparable fluorescence enhancement as sputtered aluminium mirrors. Immunoassay was also performed, using model proteins, on aluminium mirror as well as on aluminium foil based devices to confirm the activity of proteins. This work demonstrated the potential of PEMs in the large-scale, roll-to-roll manufacturing of fluorescence enhancements substrates for developing disposable, low-cost devices for fluorescence based diagnostic methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta/NiO/NiFe/Ta multilayers, utilizing Ta as buffer layer, were prepared by rf reactive and de magnetron sputtering. The exchange coupling field between NiO and NiFe reached a maximum value of 9.6x10(3) A/m at a NiO film thickness of 50 nm. The composition and chemical states at interface region of Ta/NiO/Ta were studied by using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there is an "intermixing layer" at the Ta/NiO land NiO/Ta) interface due to a thermodynamically favorable reaction 2Ta + 5NiO = 5Ni + Ta2O5. This interface reaction has a great effect on exchange coupling. The thickness of Ni+NiO estimated by XPS depth. profiles is about 8-10 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and magnetic properties of F16CuPc thin films and powder, including x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and theoretical modelling of exchange interactions are reported. Analysis of XRD from films, with thickness ranging between 100 and 160 nm, deposited onto Kapton and a perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) interlayer shows that the stacking angle (defined in the text) of the film is independent of the thickness, but that the texture is modified by both film thickness and substrate chemistry. The SQUID measurements suggest that all samples are paramagnetic, a result that is confirmed by our theoretical modelling including density functional theory calculations of one-dimensional molecular chains and Green's function perturbation theory calculations for a molecular dimer. By investigating theoretically a range of different geometries, we predict that the maximum possible exchange interaction between F16CuPc molecules is twice as large as that in unfluorinated copper-phthalocyanine (CuPc). This difference arises from the smaller intermolecular spacing in F16CuPc. Our density functional theory calculation for isolated F16CuPc molecule also shows that the energy levels of Kohn-Sham orbitals are rigidly shifted similar to 1 eV lower in F16CuPc compared to CuPc without a significant modification of the intramolecular spin physics, and that therefore the two molecules provide a suitable platform for independently varying magnetism and charge transport. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial BaTiO3 films and epitaxial BaTiO3/SrTiO3 multilayers were grown by pulsed laser deposition on vicinal surfaces of (001)-oriented Nb-doped SrTiO3 (SrTiO3:Nb) single-crystal substrates. Atomic force microscopy was used to investigate the surface topography of the deposited films. The morphology of the films, of the BaTiO3/SrTiO3 interfaces, and of the column boundaries was investigated by cross-sectional high-resolution transmission electron microscopy. Measurements of the dielectric properties were performed by comparing BaTiO3 films and BaTiO3/SrTiO3 multilayers of different numbers of individual layers, but equal overall thickness. The dielectric loss saturates for a thickness above 300 nm and linearly decreases with decreasing film thickness below a thickness of 75 nm. At the same thickness of 75 nm, the thickness dependence of the dielectric constant also exhibits a change in the linear slope both for BaTiO3 films and BaTiO3/SrTiO3 multilayers. This behaviour is explained by the change observed in the grain morphology at a thickness of 75 nm. For the thickness dependence of the dielectric constant, two phenomenological models are considered, viz. a 'series-capacitor' model and a 'dead-layer' model.