996 resultados para Magnetic elements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planar magnetic elements are becoming a replacement for their conventional rivals. Among the reasons supporting their application, is their smaller size. Taking less bulk in the electronic package is a critical advantage from the manufacturing point of view. The planar structure consists of the PCB copper tracks to generate the desired windings .The windings on each PCB layer could be connected in various ways to other winding layers to produce a series or parallel connection. These windings could be applied coreless or with a core depending on the application in Switched Mode Power Supplies (SMPS). Planar shapes of the tracks increase the effective conduction area in the windings, brings about more inductance compared to the conventional windings with the similar copper loss case. The problem arising from the planar structure of magnetic inductors is the leakage current between the layers generated by a pulse width modulated voltage across the inductor. This current value relies on the capacitive coupling between the layers, which in its turn depends on the physical parameters of the planar scheme. In order to reduce this electrical power dissipation due to the leakage current and Electromagnetic Interference (EMI), reconsideration in the planar structure might be effective. The aim of this research is to address problem of these capacitive coupling in planar layers and to find out a better structure for the planar inductance which offers less total capacitive coupling and thus less thermal dissipation from the leakage currents. Through Finite Element methods (FEM) several simulations have been carried out for various planar structures. The labs prototypes of these structures are built with the similar specification of the simulation cases. The capacitive couplings of the samples are determined with Spectrum Analyser whereby the test analysis verified the simulation results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Motion of single micrometer-sized magnetic particles on patterned magnetic surfaces is controlled by a rotating magnetic field (see Figure and cover). Patterns of thin-film magnetic elements are tailored to form transport lines. Individual particles are separated by adding junctions to the transport lines. The method can improve existing applications in biotechnology and generate new ones in life sciences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal scales to date. It is clear that while these structures may demonstrate significant magnetic field strengths, their small sizes make them prone to the buffeting supplied by the ubiquitous surrounding convective plasma motions. Here, it is believed that magnetohydrodynamic waves can be induced, which propagate along the field lines, carrying energy upwards to the outermost extremities of the solar corona. Such wave phenomena can exist in a variety of guises, including fast and slow magneto-acoustic modes, in addition to Alfven waves. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate how wave motion is generated in the solar photosphere, which oscillatory modes are most prevalent, and the role that these waves play in supplying energy to various layers of the solar atmosphere.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New materials, based on the well-known spinel compound NiMn 2O4, have been synthesized and characterized from the magnetic point of view. The manganese cation was partially substituted in the general formula NiMn2-xMexO4, by nonmagnetic and magnetic elements, such as Me = Ga, Zn, Ni and Cr (0 × 1). Prior to the determination of their magnetic properties, the non-substituted spinel NiMn2O4 was carefully characterized and studied as a function of the oxygen stoichiometry, based on the influence of the annealing atmosphere and quenching rate. The ferrimagnetic character was observed in all samples, with a paramagnetic-to-ferromagnetic transition temperature T c stabilized at 110 K, and well defined long-range antiferromagnetic interactions at lower temperatures, which depend on the applied field and the substitute concentration. © 2006 Sociedad Chilena de Química.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The goal of this work is to develop a magnetic-based passive and wireless pressure sensor for use in biomedical applications. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is composed of two magnetic elements: a magnetically-soft material acts as a sensing element, and a magnetically hard material acts as a biasing element. Both elements are embedded within a rigid sensor body and sealed with an elastomer pressure membrane. Upon excitation of an externally applied AC magnetic field, the sensing element is capable of producing higher-order magnetic signature that is able to be remotely detected with an external receiving coil. When exposed to environment with changing ambient pressure, the elastomer pressure membrane of pressure sensor is deflected depending on the surrounding pressure. The deflection of elastomer membrane changes the separation distance between the sensing and biasing elements. As a result, the higher-order harmonic signal emitted by the magnetically-soft sensing element is shifted, allowing detection of pressure change by determining the extent of the harmonic shifting. The passive and wireless nature of the sensor is enabled with an external excitation and receiving system consisting of an excitation coil and a receiving coil. These unique characteristics made the sensor suitable to be used for continuous and long-term pressure monitoring, particularly useful for biomedical applications which often require frequent surveillance. In this work, abdominal aortic aneurysm is selected as the disease model for evaluation the performance of pressure sensor and system. Animal model, with subcutaneous sensor implantation in mice, was conducted to demonstrate the efficacy and feasibility of pressure sensor in biological environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 - 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is the second in a series of studies working towards constructing a realistic, evolving, non-potential coronal model for the solar magnetic carpet. In the present study, the interaction of two magnetic elements is considered. Our objectives are to study magnetic energy build-up, storage and dissipation as a result of emergence, cancellation, and flyby of these magnetic elements. In the future these interactions will be the basic building blocks of more complicated simulations involving hundreds of elements. Each interaction is simulated in the presence of an overlying uniform magnetic field, which lies at various orientations with respect to the evolving magnetic elements. For these three small-scale interactions, the free energy stored in the field at the end of the simulation ranges from 0.2 – 2.1×1026 ergs, whilst the total energy dissipated ranges from 1.3 – 6.3×1026 ergs. For all cases, a stronger overlying field results in higher energy storage and dissipation. For the cancellation and emergence simulations, motion perpendicular to the overlying field results in the highest values. For the flyby simulations, motion parallel to the overlying field gives the highest values. In all cases, the free energy built up is sufficient to explain small-scale phenomena such as X-ray bright points or nanoflares. In addition, if scaled for the correct number of magnetic elements for the volume considered, the energy continually dissipated provides a significant fraction of the quiet Sun coronal heating budget.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new method for winding configuration in planar magnetic elements with more than two layers. It has been proven by 3D Finite Element method and mathematical modeling that this suggested configuration results in reduction of the equivalent capacitive coupling in the planar inductor

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyses effects of winding structure on capacitive coupling reduction appearing in the planar magnetic elements at high frequencies. Capacitive coupling appears between the conductive layers of the planar transformers resulting in high current spikes and consequently high power dissipation. With finite element analysis, the equivalent capacitive coupling of magnetic elements is calculated for different structures of planar windings. Finally, a new winding structure with minimum capacitive coupling is introduced for the planar magnetic elements, which is verified by simulation and experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic vortex that consists of an in-plane curling magnetization configuration and a needle-like core region with out-of-plane magnetization is known to be the ground state of geometrically confined submicron soft magnetic elements. Here magnetodynamics of relatively thick (50-100 nm) circular Ni80Fe20 dots were probed by broadband ferromagnetic resonance in the absence of external magnetic field. Spin excitation modes related to the thickness dependent vortex core gyrotropic dynamics were detected experimentally in the gigahertz frequency range. Both analytical theory and micromagnetic simulations revealed that these exchange dominated modes are flexure oscillations of the vortex core string with n = 0,1,2 nodes along the dot thickness. The intensity of the mode with n = 1 depends significantly on both dot thickness and diameter and in some cases is higher than the one of the uniform mode with n = 0. This opens promising perspectives in the area of spin transfer torque oscillators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-frequency fluctuations are observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument (Jess et al. 2010, Solar Phys, 261, 363) at the Dunn Solar Telescope. This can produce simultaneous observations in up to six channels, at different heights in the photosphere and chromosphere, at an unprecedentedly high cadence of 0.5 seconds, and at a spatial resolution of 100 km after photometrically correct speckle reconstruction. Here we concentrate on observations at two levels. The first is in the G-band of the CH radical at 4305.5Å, bandpass 9.2Å, with height of formation z <250 km at a cadence of 0.525 sec corresponding to Nyquist frequency 950 mHz. The second is in the Ca II K-line core at 3933.7Å, bandpass 1.0Å, with height of formation z <1300 km, and cadence 4.2 sec giving Nyquist frequency 120 mHz. The data span 53 min, and the maximum field of view is 45 Mm. The data were taken on 28 May 2009 in internetwork and network near disk center. Using both Fourier and Morlet wavelet methods we find evidence in the G-band spectra for intensity fluctuations above noise out to frequencies f >> 100 mHz. The K-line signal is noisier and is seen only for f <50 mHz. With wavelet techniques we find that G-band spectral power with 20 <f <100 mHz is clearly concentrated in the intergranular lanes and especially at the locations of magnetic elements indicated by G-band bright points. This wavelet power is highly intermittent in time. By cross-correlating the data we find that pulses of high-frequency G-band power in the photosphere tend to be followed by increases in K-line emission in the chromosphere with a time lag of about 2 min.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a study regarding the optimization of multipulse converters. A general expression for the connection (Δ or Y) for both 12 and 18-pulses is obtained and describes the output voltages on the secondary windings, depending on the voltage reference from the primary. These generalized expressions allows choosing different ratios between input and output voltages and as result an optimum operation point for the converter can be calculated. Considering Δ-connected converters the optimum point occurs when the magnetic core of the autotransformer processes 18% and 17% of the output power for 12 and 18-pulses, respectively. For Y-connected converters the optimum point occurs when the kVA rating is 13% and 18% for 12 and 18-pulses, respectively. Based on these results magnetic elements can be calculated and designed leading to a great weight and volume reduction and also to lower costs and losses. Finally an analysis is made to improve the kVA rating of the transformers for 12 and 18 pulses converters. © 2009 IEEE.