983 resultados para Macro simulation
Resumo:
The work done in this thesis attempts to demonstrate the importance of using models that can predict and represent the mobility of our society. To answer the proposed challenges two models were examined, the first corresponds to macro simulation with the intention of finding a solution to the frequency of the bus company Horários do Funchal, responsible for transport in the city of Funchal, and some surrounding areas. Where based on a simplified model of the city it was possible to increase the frequency of journeys getting an overall reduction in costs. The second model concerns the micro simulation of Avenida do Mar, where currently is being built a new roundabout (Praça da Autonomia), which connects with this avenue. Therefore it was proposed to study the impact on local traffic, and the implementation of new traffic lights for this purpose. Four possible situations in which was seen the possibility of increasing the number of lanes on the roundabout or the insertion of a bus lane were created. The results showed that having a roundabout with three lanes running is the best option because the waiting queues are minimal, and at environmental level this model will project fewer pollutants. Thus, this thesis presents two possible methods of urban planning. Transport modelling is an area that is under constant development, the global goal is to encourage more and more the use of these models, and as such it is important to have more people to devote themselves to studying new ways of addressing current problems, so that we can have more accurate models and increasing their credibility.
Resumo:
The private market benefits of education, i.e. the wage premia of graduates, are widely studied at the micro level, although the magnitude of their macroeconomic impact is disputed. However, there are additional benefits of education, which are less well understood but could potentially drive significant macroeconomic impacts. Following the taxonomy of McMahon (2009) we identify four different types of benefits of education. These are: private market benefits (wage premia); private non market benefits (own health, happiness, etc.); external market benefits (productivity spillovers; and external non-market benefits (crime rates, civic society, democratisation, etc.). Drawing on available microeconometric evidence we use a micro-to-macro simulation approach (Hermannsson et al, 2010) to estimate the macroeconomic impacts of external benefits of higher education. We explore four cases: technology spillovers from HEIs; productivity spillovers from more skilled workers in the labour market; reduction in property crime; and the potential overall impact of external and private non-market benefits. Our results suggest that the external economic benefits of higher education could potentially be very large. However, given the dearth of microeconomic evidence this result should be seen as tentative. Our aim is to illustrate the links from education to the wider economy in principle and encourage further research in the field.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
In MIMO systems the antenna array configuration in the BS and MS has a large influence on the available channel capacity. In this paper, we first introduce a new Frequency Selective (FS) MIMO framework for macro-cells in a realistic urban environment. The MIMO channel is built over a previously developed directional channel model, which considers the terrain and clutter information in the cluster, line-of-sight and link loss calculations. Next, MIMO configuration characteristics are investigated in order to maximize capacity, mainly the number of antennas, inter-antenna spacing and SNR impact. Channel and capacity simulation results are presented for the city of Lisbon, Portugal, using different antenna configurations. Two power allocations schemes are considered, uniform distribution and FS spatial water-filling. The results suggest optimized MIMO configurations, considering the antenna array size limitations, specially at the MS side.
Resumo:
This paper attempts to estimate the impact of population ageing on house prices. There is considerable debate about whether population ageing puts downwards or upwards pressure on house prices. The empirical approach differs from earlier studies of this relationship, which are mainly regression analyses of macro time-series data. A micro-simulation methodology is adopted that combines a macro-level house price model with a micro-level household formation model. The case study is Scotland, a country that is expected to age rapidly in the future. The parameters of the household formation model are estimated with panel data from the British Household Panel Survey covering the period 1999-2008. The estimates are then used to carry out a set of simulations. The simulations are based on a set of population projections that represent a considerable range in the rate of population ageing. The main finding from the simulations is that population ageing—or more generally changes in age structure—is not likely a main determinant of house prices, at least in Scotland.
Resumo:
Connectivity analysis on diffusion MRI data of the whole- brain suffers from distortions caused by the standard echo- planar imaging acquisition strategies. These images show characteristic geometrical deformations and signal destruction that are an important drawback limiting the success of tractography algorithms. Several retrospective correction techniques are readily available. In this work, we use a digital phantom designed for the evaluation of connectivity pipelines. We subject the phantom to a âeurooetheoretically correctâeuro and plausible deformation that resembles the artifact under investigation. We correct data back, with three standard methodologies (namely fieldmap-based, reversed encoding-based, and registration- based). Finally, we rank the methods based on their geometrical accuracy, the dropout compensation, and their impact on the resulting connectivity matrices.
Resumo:
Model-based estimates of future uncertainty are generally based on the in-sample fit of the model, as when Box-Jenkins prediction intervals are calculated. However, this approach will generate biased uncertainty estimates in real time when there are data revisions. A simple remedy is suggested, and used to generate more accurate prediction intervals for 25 macroeconomic variables, in line with the theory. A simulation study based on an empirically-estimated model of data revisions for US output growth is used to investigate small-sample properties.
Resumo:
O uso da comunicação de voz e dados através de dispositivos móveis vem aumentando significativamente nos últimos anos. Tal expansão traz algumas dificuldades inerentes, tais como: ampliação constante de capacidade das redes e eficiência energética. Neste contexto, vem se consolidando o conceito de Green networks, que se concentra no esforço para economia de energia e redução de CO2. Neste sentido, este trabalho propõe validar um modelo de uma política baseado em processo markoviano de decisão, visando a otimizar o consumo de energia, QoS e QoE, na alocação de usuários em redes macrocell e femtocell. Para isso o modelo foi inserido no simulador NS-2, aliando a solução analítica markoviana à flexibilidade característica da simulação discreta. A partir dos resultados apresentados na simulação, a política obteve uma economia significativa no consumo energético, melhorando a eficiência energética em até 4%, além de melhorar a qualidade de serviço em relação às redes macrocell e femtocell, demonstrando-se eficaz, de modo a alterar diretamente as métricas de QoS e de QoE.
Resumo:
Although the Monte Carlo (MC) method allows accurate dose calculation for proton radiotherapy, its usage is limited due to long computing time. In order to gain efficiency, a new macro MC (MMC) technique for proton dose calculations has been developed. The basic principle of the MMC transport is a local to global MC approach. The local simulations using GEANT4 consist of mono-energetic proton pencil beams impinging perpendicularly on slabs of different thicknesses and different materials (water, air, lung, adipose, muscle, spongiosa, cortical bone). During the local simulation multiple scattering, ionization as well as elastic and inelastic interactions have been taken into account and the physical characteristics such as lateral displacement, direction distributions and energy loss have been scored for primary and secondary particles. The scored data from appropriate slabs is then used for the stepwise transport of the protons in the MMC simulation while calculating the energy loss along the path between entrance and exit position. Additionally, based on local simulations the radiation transport of neutrons and the generated ions are included into the MMC simulations for the dose calculations. In order to validate the MMC transport, calculated dose distributions using the MMC transport and GEANT4 have been compared for different mono-energetic proton pencil beams impinging on different phantoms including homogeneous and inhomogeneous situations as well as on a patient CT scan. The agreement of calculated integral depth dose curves is better than 1% or 1 mm for all pencil beams and phantoms considered. For the dose profiles the agreement is within 1% or 1 mm in all phantoms for all energies and depths. The comparison of the dose distribution calculated using either GEANT4 or MMC in the patient also shows an agreement of within 1% or 1 mm. The efficiency of MMC is up to 200 times higher than for GEANT4. The very good level of agreement in the dose comparisons demonstrate that the newly developed MMC transport results in very accurate and efficient dose calculations for proton beams.
Resumo:
Recently, steady economic growth rates have been kept in Poland and Hungary. Money supplies are growing rather rapidly in these economies. In large, exchange rates have trends of depreciation. Then, exports and prices show the steady growth rates. It can be thought that per capita GDPs are in the same level and development stages are similar in these two countries. It is assumed that these two economies have the same export market and export goods are competing in it. If one country has an expansion of monetary policy, price increase and interest rate decrease. Then, exchange rate decrease. Exports and GDP will increase through this phenomenon. At the same time, this expanded monetary policy affects another country through the trade. This mutual relationship between two countries can be expressed by the Nash-equilibrium in the Game theory. In this paper, macro-econometric models of Polish and Hungarian economies are built and the Nash- equilibrium is introduced into them.
Resumo:
Friction in hydrodynamic bearings are a major source of losses in car engines ([69]). The extreme loading conditions in those bearings lead to contact between the matching surfaces. In such conditions not only the overall geometry of the bearing is relevant, but also the small-scale topography of the surface determines the bearing performance. The possibility of shaping the surface of lubricated bearings down to the micrometer ([57]) opened the question of whether friction can be reduced by mean of micro-textures, with mixed results. This work focuses in the development of efficient numerical methods to solve thin film (lubrication) problems down to the roughness scale of measured surfaces. Due to the high velocities and the convergent-divergent geometries of hydrodynamic bearings, cavitation takes place. To treat cavitation in the lubrication problem the Elrod- Adams model is used, a mass-conserving model which has proven in careful numerical ([12]) and experimental ([119]) tests to be essential to obtain physically meaningful results. Another relevant aspect of the modeling is that the bearing inertial effects are considered, which is necessary to correctly simulate moving textures. As an application, the effects of micro-texturing the moving surface of the bearing were studied. Realistic values are assumed for the physical parameters defining the problems. Extensive fundamental studies were carried out in the hydrodynamic lubrication regime. Mesh-converged simulations considering the topography of real measured surfaces were also run, and the validity of the lubrication approximation was assessed for such rough surfaces.
Resumo:
Intelligent agents offer a new and exciting way of understanding the world of work. Agent-Based Simulation (ABS), one way of using intelligent agents, carries great potential for progressing our understanding of management practices and how they link to retail performance. We have developed simulation models based on research by a multi-disciplinary team of economists, work psychologists and computer scientists. We will discuss our experiences of implementing these concepts working with a well-known retail department store. There is no doubt that management practices are linked to the performance of an organisation (Reynolds et al., 2005; Wall & Wood, 2005). Best practices have been developed, but when it comes down to the actual application of these guidelines considerable ambiguity remains regarding their effectiveness within particular contexts (Siebers et al., forthcoming a). Most Operational Research (OR) methods can only be used as analysis tools once management practices have been implemented. Often they are not very useful for giving answers to speculative ‘what-if’ questions, particularly when one is interested in the development of the system over time rather than just the state of the system at a certain point in time. Simulation can be used to analyse the operation of dynamic and stochastic systems. ABS is particularly useful when complex interactions between system entities exist, such as autonomous decision making or negotiation. In an ABS model the researcher explicitly describes the decision process of simulated actors at the micro level. Structures emerge at the macro level as a result of the actions of the agents and their interactions with other agents and the environment. We will show how ABS experiments can deal with testing and optimising management practices such as training, empowerment or teamwork. Hence, questions such as “will staff setting their own break times improve performance?” can be investigated.
Resumo:
The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.