943 resultados para MYCOBACTERIUM LEPRAE
Resumo:
Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches including four complementary footprinting assays such as DNase I, Cu/phenanthroline, methylation protection and KMnO4, enhancement of 2-aminopurine fluorescence and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site and generates two staggered double-strand breaks. Taken together, these results implicate that PI-MleI possess a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of LAGLIDADG family of homing endonucleases
Resumo:
Background: The Mycobacterium leprae genome has less than 50% coding capacity and 1,133 pseudogenes. Preliminary evidence suggests that some pseudogenes are expressed. Therefore, defining pseudogene transcriptional and translational potentials of this genome should increase our understanding of their impact on M. leprae physiology. Results: Gene expression analysis identified transcripts from 49% of all M. leprae genes including 57% of all ORFs and 43% of all pseudogenes in the genome. Transcribed pseudogenes were randomly distributed throughout the chromosome. Factors resulting in pseudogene transcription included: 1) co-orientation of transcribed pseudogenes with transcribed ORFs within or exclusive of operon-like structures; 2) the paucity of intrinsic stem-loop transcriptional terminators between transcribed ORFs and downstream pseudogenes; and 3) predicted pseudogene promoters. Mechanisms for translational ``silencing'' of pseudogene transcripts included the lack of both translational start codons and strong Shine-Dalgarno (SD) sequences. Transcribed pseudogenes also contained multiple ``in-frame'' stop codons and high Ka/Ks ratios, compared to that of homologs in M. tuberculosis and ORFs in M. leprae. A pseudogene transcript containing an active promoter, strong SD site, a start codon, but containing two in frame stop codons yielded a protein product when expressed in E. coli. Conclusion: Approximately half of M. leprae's transcriptome consists of inactive gene products consuming energy and resources without potential benefit to M. leprae. Presently it is unclear what additional detrimental affect(s) this large number of inactive mRNAs has on the functional capability of this organism. Translation of these pseudogenes may play an important role in overall energy consumption and resultant pathophysiological characteristics of M. leprae. However, this study also demonstrated that multiple translational ``silencing'' mechanisms are present, reducing additional energy and resource expenditure required for protein production from the vast majority of these transcripts.
Resumo:
Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their ctive center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active-site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.
Resumo:
The crystal structures of two forms of Mycobacterium leprae single-stranded DNA-binding protein (SSB) have been determined at 2.05 and 2.8 A resolution. Comparison of these structures with the structures of other eubacterial SSBs indicates considerable variation in their quaternary association, although the DNA-binding domains in all of them exhibit the same OB-fold. This variation has no linear correlation with sequence variation, but could be related to variation in protein stability. Molecular-dynamics simulations have been carried out on tetrameric molecules derived from the two forms and the prototype Escherichia coli SSB and the individual subunits of both proteins. Together, the X-ray studies and molecular-dynamics simulations yield information on the relatively rigid and flexible regions of the molecule and on the effect of oligomerization on flexibility. The simulations provide insight into the changes in subunit structure on oligomerization. They also provide insight into the stability and time evolution of the hydrogen bonds/water bridges that connect the two pairs of monomers in the tetramer.
Resumo:
The nucleotide sequence of cosmid B1790, carrying the Rif-Str regions of the Mycobacterium leprae chromosome, has been determined. Twelve open reading frames were identified in the 36716bp sequence, representing 40% of the coding capacity. Five ribosomal proteins, two elongation factors and the β and β'subunits of RNA polymerase have been characterized and two novel genes were found. One of these encodes a member of the so-called ABC family of ATP-binding proteins while the other appears to encode an enzyme involved in repairing genomic lesions caused by free radicals. This finding may well be significant as M. leprae, an intracellular pathogen, lives within macrophages.
Resumo:
Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. (C) 2011 Elsevier B.V. All rights reserved.
Autolytic Mycobacterium leprae Hsp65 fragments may act as biological markers for autoimmune diseases
Resumo:
Investigating the proteolytic activity of the recombinant Mycobacterium leprae Heat Shock Protein of 65 kDa (rHsp65), chaperonin 2 (cpn2), we observed that it displays high instability. The fragmentation process starts at the C-terminus followed by progressive degradation of the N-terminus, which leads to a stable fragment comprising the middle region of the molecule. Urea was able to prevent autolysis, probably due to its denaturing action, while EDTA increased degradation levels indicating the need for metal ions. Peptides originated from autolysis were purified and analyzed by mass spectrometry, generating a continuous map. Since the bacteria and mammalian Hsp60 are known to be targets of the immune response and have been implicated in autoimmune diseases and chronic inflammation, the in vivo effect of rHsp65 peptides was evaluated in the spontaneous Systemic Lupus Erythematosus (SLE) model developed by the (NZB/NZW)F(1) mouse hybrids, and their individual anti-rHsp65 IgG2a/IgG1 antibody titer ratio was determined. The results showed orientation toward a T(H)1 responsiveness, and the treatment with the rHsp65 peptides diminished the environmental variance of the survival time of treated animals. These results outline the fact that environmental factors may also act through the modified stability expression of Heat Shock Proteins intervening during autoimmune processes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Leprosy is still a worldwide public health problem. Brazil and India show the highest prevalence rates of the disease. Natural infection of armadillos Dasypus novemcinctus with Mycobacterium leprae has been reported in some regions of the United States. Identification of bacilli is difficult, particularly due to its inability to grow in vitro. The use of molecular tools represents a fast and sensitive alternative method for diagnosis of mycobacteriosis. In the present study, the diagnostic methods used were bacilloscopy, histopathology, microbiology, and PCR using specific primers for M. leprae repetitive sequences. PCR were performed using genomic DNA extracted from 138 samples of liver, spleen, lymph nodes, and skin of 44 D. novemcinctus, Euphractus sexcinctus, Cabassous unicinctus, and C. tatouay armadillos from the Middle Western region of the state of São Paulo and from the experimental station of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Pantanal, located in Pantanal da Nhecolândia of Mato Grosso do Sul state. Also, the molecular analysis of 19 samples from internal organs of other road killed species of wild animals, such as Nasua nasua (ring-tailed coati), Procyon cancrivoros (hand-skinned), Cerdocyon thous (dog-pity-bush), Cavia aperea (restless cavy), Didelphis albiventris (skunk), Sphigurrus spinosus (hedgehog), and Gallictis vittata (ferret) showed PCR negative data. None of the 157 analyzed samples had shown natural mycobacterial infection. Only the armadillo inoculated with material collected from untreated multibacillary leprosy patient presented PCR positive and its genomic sequencing revealed 100% identity with M. leprae. According to these preliminary studies, based on the used methodology, it is possible to conclude that wild mammals seem not to play an important role in the epidemiology of leprosy in the Middle Western region of the São Paulo state and in the Pantanal of Mato Grosso do Sul state.
Resumo:
Heat-shock proteins (HSPs) are currently one of the most promising targets for the development of immunotherapy against tumours and autoimmune disorders. This protein family has the capacity to activate or modulate the function of different immune system cells. They induce the activation of monocytes, macrophages and dendritic cells, and contribute to cross-priming, an important mechanism of presentation of exogenous antigen in the context of MHC class I molecules, These various immunological properties of HSP have encouraged their use in several clinical trials. Nevertheless, an important issue regarding these proteins is whether the high homology among HSPs across different species may trigger the breakdown of immune tolerance and induce autoimmune diseases. We have developed a DNA vaccine codifying the Mycobacterium leprae Hsp65 (DNAhsp65), which showed to be highly immunogenic and protective against experimental tuberculosis. Here, we address the question of whether DNAhsp65 immunization could induce pathological autoimmunity in mice. Our results show that DNAhsp65 vaccination induced antibodies that can recognize the human Hsp60 but did not induce harmful effects in 16 different organs analysed by histopathology up to 210 days after vaccination. We also showed that anti-DNA antibodies were not elicited after DNA vaccination. The results are important for the development of both HSP and DNA-based immunomodulatory agents.
Resumo:
The lysogenic capacity of human macrophages facing M. leprae in vitro may be dependent on an important genetic component. Although the familial aggregation of the trait is demonstrated, this is a necessary but not sufficient condition to prove genetic influence. The data do not fit some simple genetic models (autosomal dominant or incompletely dominant gene; dominant or recessive sex-linked gene). The results obtained are consistent with the hypothesis that the macrophages' lysogenic capacity is mainly due to a major gene with variable expressivity. This hypothesis may be too simple to account for the whole variability detected and therefore must be considered a working hypothesis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)