917 resultados para MIDBRAIN NEURONS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ether A go-go (Eag) gene encodes the voltage-gated potassium (K+) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K+ channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K+ channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K+-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K+ channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bei der Parkinsonschen Krankheit kommt es zu einer selektiven Degeneration der dopaminergen Neurone in der Substantia nigra pars compacta. Die Rolle des oxidativen Stresses in der Pathogenese dieser Erkrankung konnte an post mortem Untersuchungen der Parkinson-Patienten, wie auch an zahlreichen in vitro und in vivo Modellen bestätigt werden. Die Anwendung von Antioxidantien wurde als therapeutische Strategie der Parkinsonschen Krankheit vorgeschlagen. In dieser Hinsicht wurden bereits antioxidative Substanzen in klinischen Studien evaluiert. Klinische Studien mit Antioxidantien haben jedoch bislang nur wenig überzeugende Ergebnisse erbracht, mit Ausnahme des Einsatzes des Ubichinons (Coenzym Q). Eine kritische Analyse der klinischen Studien lässt zusammenfassen, dass auf Seiten der verwendeten Antioxidantien noch massiver Optimierungsbedarf besteht. Für einen erfolgreichen therapeutischen Einsatz von Antioxidantien bei dieser Krankheit sind folgende Eigenschaften der Substanzen von höchster Bedeutung: i) maximale neuroprotektive Aktivität bei geringen Dosen; ii) geringe Nebenwirkungen; iii) eine hohe Blut-Hirn-Schrankengängigkeit.In dieser Arbeit wurde das neuroprotektive Potential von drei Bisarylimin-basierten antioxidativen Strukturen (Phenothiazin, Iminostilben und Phenoxazin) in in vitro und in vivo Parkinson-Modellsystemen evaluiert. Beide experimentellen Modelle basieren auf der Wirkung der mitochondrialen Komplex I Inhibitoren 1-Methyl-4-Phenylpyridin (MPP+) und Rotenon, welche pathophysiologische Charakteristika der Parkinsonschen Krankheit reproduzieren. Unsere in vitro Untersuchungen an primären Neuronen des Mittelhirns und der klonalen SH-SY5Y-Neuroblastomazelllinie konnten zeigen, dass die Komplex I Inhibition krankheitsspezifische zelluläre Merkmale induziert, wie die Abnahme der antioxidativen Verteidigungskapazität und Verlust des mitochondrialen Membranpotentials. Zusätzlich kommt es in primären Neuronen des Mittelhirns zur selektiven Degeneration dopaminerger Neurone, welche in der Parkinsonschen Erkrankung besonders betroffen sind. Ko-Inkubation der in vitro Modelle mit Phenothiazin, Iminostilben und Phenoxazin in niedrigen Konzentrationen (50 nM) halten die pathologischen Prozesse fast vollständig auf. In vivo Untersuchungen am MPP+- und Rotenon-basierten Caenorhabditis elegans (C. elegans) Modell bestätigen das neuroprotektive Potential der Bisarylimine. Hierfür wurde eine transgene C. elegans Linie mithilfe einer dopaminerg spezifischen DsRed2- (Variante des rot fluoreszierenden Proteins von Discosoma sp.)-Expression und pan-neuronaler CFP- (cyan fluoreszierendes Protein)-Expression zur Visualisierung der dopaminergen Neuronenpopulation in Kontrast zum Gesamtnervensystem erstellt. Behandlung des C. elegans mit MPP+ und Rotenon im larvalen und adulten Stadium führt zu einer selektiven Degeneration dopaminerger Neurone, sowie zum Entwicklungsarrest der larvalen Population. Die dopaminerge Neurodegeneration, wie auch weitere phänotypische Merkmale des C. elegans Modells, können durch Phenothiazin, Iminostilben und Phenoxazin in niedrigen Konzentrationen (500 nM) komplett verhindert werden. Ein systemischer Vergleich aromatischer Bisarylimine mit bekannten, gut charakterisierten Antioxidantien, wie α-Tocopherol (Vitamin E), Epigallocatechingallat und β-Catechin, zeigt, dass effektive Konzentrationen für Phenothiazin, Iminostilben und Phenoxazin um Zehnerpotenzen niedriger liegen im Vergleich zu natürlichen Antioxidantien. Der Wirkungsmechanismus der Bisarylimine konnte in biochemischen und in vitro Analysen, sowie in Verhaltensuntersuchungen an C. elegans von der Wirkungsweise strukturell ähnlicher, neuroleptisch wirkender Phenothiazin-Derivate differenziert werden. Die Analyse des dopaminerg-gesteuerten Verhaltens (Beweglichkeit) in C. elegans konnte verdeutlichen, dass antioxidative und Dopaminrezeptor-bindende Eigenschaften der Bisaryliminstrukturen sich gegenseitig ausschließen. Diese qualitativen Merkmale unterscheiden Bisarylimine fundamental von klinisch angewandten Neuroleptika (Phenothiazin-Derivate), welche als Dopaminrezeptor-Antagonisten zur Behandlung psychischer Erkrankungen klinisch eingesetzt werden.Aromatische Bisarylimine (Phenothiazin, Iminostilben und Phenoxazin) besitzen günstige strukturelle Eigenschaften zur antioxidativ-basierter Neuroprotektion. Durch die Anwesenheit der antioxidativ wirkenden, nicht-substituierten Iminogruppe unterscheiden sich Bisarylimine grundlegend von neuroleptisch-wirkenden Phenothiazin-Derivaten. Wichtige strukturelle Voraussetzungen eines erfolgreichen antioxidativen Neuropharmakons, wie eine hohe Radikalisierbarkeit, die stabile Radikalform und der lipophile Charakter des aromatischen Ringsystems, werden in der Bisaryliminstruktur erfüllt. Antioxidative Bisarylimine könnten in der Therapie der Parkinsonschen Krankheit als eine effektive neuroprotektiv-therapeutische Strategie weiter entwickelt werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium (Ca2+) ist ein ubiquitär vorkommendes Signalmolekül, das an der Regulation zahlreicher zellulärer Prozesse, von der Proliferation bis zum programmierten Zelltod, beteiligt ist. Daher müssen die intrazellulären Ca2+-Spiegel streng kontrolliert werden. Veränderungen der Ca2+-Homöostase während der altersassoziierten Neurodegeneration können dazu beitragen, dass Neuronen vulnerabler sind. So wurden erhöhte Ca2+-Konzentrationen in gealterten Neuronen, begleitet von einer erhöhten Vulnerabilität, beobachtet (Hajieva et al., 2009a). Weiterhin wird angenommen, dass der selektive Untergang von dopaminergen Neuronen bei der Parkinson Erkrankung auf eine erhöhte Ca2+-Last zurückzuführen sein könnte, da diese Neuronen einem ständigen Ca2+-Influx,rnaufgrund einer besonderen Isoform (CaV 1.3) spannungsgesteuerter Ca2+-Kanäle des L-Typs, ausgesetzt sind (Chan et al., 2007). Bislang wurden die molekularen Mechanismen, die einem Ca2+-Anstieg zu Grunde liegen und dessen Auswirkung jedoch nicht vollständig aufgeklärt und daher in der vorliegenden Arbeit untersucht. Um Veränderungen der Ca2+-Homöostase während der altersassoziiertenrnNeurodegeneration zu analysieren wurden primäre Mittelhirnzellen aus Rattenembryonen und SH-SY5Y-Neuroblastomazellen mit dem Neurotoxin 1-Methyl-4-Phenyl-Pyridin (MPP+), das bei der Etablierung von Modellen der Parkinson-Erkrankung breite Anwendung findet, behandelt. Veränderungen der intrazellulären Ca2+-Konzentration wurden mit einem auf dem grün fluoreszierenden Protein (GFP)-basierten Ca2+-Indikator,rn„Cameleon cpYC 3.6“ (Nagai et al., 2004), ermittelt. Dabei wurde in dieser Arbeit gezeigt, dass MPP+ die Abregulation der neuronenspezifischen ATP-abhängigen Ca2+-Pumpe der Plasmamembran (PMCA2) induziert, die mit der Ca2+-ATPase des endoplasmatischen Retikulums (SERCA) und dem Na+/Ca2+-Austauscher (NCX) das zelluläre Ca2+-Effluxsystem bildet, was zu einer erhöhten zytosolischen Ca2+-Konzentration führt. Die PMCA2-Abnahme wurde sowohl auf Transkriptionsebene als auch auf Proteinebene demonstriert, während keine signifikanten Veränderungen der SERCA- und NCX-Proteinmengen festgestellt wurden. Als Ursache der Reduktion der PMCA2-Expression wurde eine Abnahme des Transkriptionsfaktors Phospho-CREB ermittelt, dessen Phosphorylierungsstatus abhängig von der Proteinkinase A (PKA) war. Dieser Mechanismus wurde einerseits unter MPP+-Einfluss und andererseits vermittelt durch endogene molekulare Modulatoren gezeigt. Interessanterweise konnten die durch MPP+ induzierte PMCA2-Abregulation und der zytosolische Ca2+-Anstieg durch die Aktivierung der PKA verhindert werden. Parallel dazu wurde eine MPP+-abhängige verringerte mitochondriale Ca2+-Konzentration nachgewiesen, welche mit einer Abnahme des mitochondrialen Membranpotentials korrelierte. Darüber hinaus kam es als Folge der PMCA2-Abnahme zu einem verminderten neuronalen Überleben.rnVeränderungen der Ca2+-Homöostase wurden auch während der normalen Alterung inrnprimären Fibroblasten und bei Mäusen nachgewiesen. Dabei wurden verringerte PMCA und SERCA-Proteinmengen in gealterten Fibroblasten, einhergehend mit einem Anstieg der zytosolischen Ca2+-Konzentration demonstriert. Weiterhin wurden verringerte PMCA2-Proteinmengen im Mittelhirn von gealterten Mäusen (C57B/6) detektiert.rnDer zelluläre Ca2+-Efflux ist somit sowohl im Zuge der physiologischen Alterung als auch in einem altersbezogenen Krankheitsmodell beeinträchtigt, was das neuronale Überleben beeinflussen kann. In zukünftige Studien soll aufgeklärt werden, welche Auswirkungen einer PMCA2-Reduktion genau zu dem Verlust von Neuronen führen bzw. ob durch eine PMCA2-Überexpression neurodegenerative Prozesse verhindert werden können.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ventral midbrain (VM) dopaminergic (DA) neurons, which project to the dorsal striatum via the nigrostriatal pathway, are progressively degenerated in Parkinson’s disease (PD). The identification of the instructive factors that regulate midbrain DA neuron development, and the subsequent elucidation of the molecular bases of their effects, is vital. Such an understanding would facilitate the generation of transplantable DA neurons from stem cells and the identification of developmentally-relevant neurotrophic factors, the two most promising therapeutic approaches for PD. Two related members of the bone morphogenetic protein (BMP) family, BMP2 and growth/differentiation factor (GDF) 5, which signal via a canonical Smad 1/5/8 signalling pathway, have been shown to have neurotrophic effects on midbrain DA neurons both in vitro and in vivo, and may function to regulate VM DA neuronal development. However, the molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. The present thesis hypothesised that canonical Smad signalling mediates the direct effects of BMP2 and GDF5 on the development of VM DA neurons. By activating, modulating and/or inhibiting various components of the BMP-Smad signalling pathway, this research demonstrated that GDF5- and BMP2-induced neurite outgrowth from midbrain DA neurons is dependent on BMP type I receptor activation of the Smad signalling pathway. The role of glial cell-line derived neurotrophic factor (GDNF)-signalling, dynamin-dependent endocytosis and Smad interacting protein-1 (Sip1) regulation, in the neurotrophic effects of BMP2 and GDF5 were determined. Finally, the in vitro development of VM neural stem cells (NSCs) was characterised, and the ability of GDF5 and BMP2 to induce these VM NSCs towards DA neuronal differentiation was investigated. Taken together, these experiments identify GDF5 and BMP2 as novel regulators of midbrain DA neuronal induction and differentiation, and demonstrate that their effects on DA neurons are mediated by canonical BMPR-Smad signalling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and prodopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-XL induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-XL anticipates and enhances DAn generation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A recombinant adeno-associated virus (rAAV) vector capable of infecting cells and expressing rat glial cell line-derived neurotrophic factor (rGDNF), a putative central nervous system dopaminergic survival factor, under the control of a potent cytomegalovirus (CMV) immediate/early promoter (AAV-MD-rGDNF) was constructed. Two experiments were performed to evaluate the time course of expression of rAAV-mediated GDNF protein expression and to test the vector in an animal model of Parkinson’s disease. To evaluate the ability of rAAV-rGDNF to protect nigral dopaminergic neurons in the progressive Sauer and Oertel 6-hydroxydopamine (6-OHDA) lesion model, rats received perinigral injections of either rAAV-rGDNF virus or rAAV-lacZ control virus 3 weeks prior to a striatal 6-OHDA lesion and were sacrificed 4 weeks after 6-OHDA. Cell counts of back-labeled fluorogold-positive neurons in the substantia nigra revealed that rAAV-MD-rGDNF protected a significant number of cells when compared with cell counts of rAAV-CMV-lacZ-injected rats (94% vs. 51%, respectively). In close agreement, 85% of tyrosine hydroxylase-positive cells remained in the nigral rAAV-MD-rGDNF group vs. only 49% in the lacZ group. A separate group of rats were given identical perinigral virus injections and were sacrificed at 3 and 10 weeks after surgery. Nigral GDNF protein expression remained relatively stable over the 10 weeks investigated. These data indicate that the use of rAAV, a noncytopathic viral vector, can promote delivery of functional levels of GDNF in a degenerative model of Parkinson’s disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To visualize and isolate live dopamine (DA)-producing neurons in the embryonic ventral mesencephalon, we generated transgenic mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase gene promoter. In the transgenic mice, GFP expression was observed in the developing DA neurons containing tyrosine hydroxylase. The outgrowth and cue-dependent guidance of GFP-labeled axons was monitored in vitro with brain culture systems. To isolate DA neurons expressing GFP from brain tissue, cells with GFP fluorescence were sorted by fluorescence-activated cell sorting. More than 60% of the sorted GFP+ cells were positive for tyrosine hydroxylase, confirming that the population had been successfully enriched with DA neurons. The sorted GFP+ cells were transplanted into a rat model of Parkinson's disease. Some of these cells survived and innervated the host striatum, resulting in a recovery from Parkinsonian behavioral defects. This strategy for isolating an enriched population of DA neurons should be useful for cellular and molecular studies of these neurons and for clinical applications in the treatment of Parkinson's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the vertebrate brain. In the midbrain, GABAergic neurons contribute to the regulation of locomotion, nociception, defensive behaviours, fear and anxiety, as well as sensing reward and addiction. Despite the clinical relevance of this group of neurons, the mechanisms regulating their development are largely unknown. In addition, their migration and connectivity patterns are poorly characterized. This study focuses on the molecular mechanisms specifying the GABAergic fate, and the developmental origins of midbrain GABAergic neurons. First, we have characterized the function of a zink-finger transcription factor Gata2. Using a tissue-specific mutagenesis in mouse midbrain and anteror hindbrain, we showed that Gata2 is a crucial determinant of the GABAergic fate in midbrain. In the absence of Gata2, no GABAergic neurons are produced from the otherwise competent midbrain neuroepithelium. Instead, the Gata2-mutant cells acquire a glutamatergic neuron phenotype. Ectopic expression of Gata2 was also sufficient to induce GABAergic in chicken midbrain. Second, we have analyzed the midbrain phenotype of mice mutant for a proneural gene Ascl1, and described the variable and region-dependent requirements for Ascl1 in the midbrain GABAergic neurogenesis. These studies also have implications on the origin of distinct anatomical and functional GABAergic subpopulations in midbrain. Third, we have identified unique developmental properties of GABAergic neurons that are associated with the midbrain dopaminergic nuclei, the substantia nigra pars reticulata (SNpr) and ventral tegmental area (VTA). Namely, the genetic regulation of GABAergic fate in these cells is distinct from the rest of midbrain. In accordance to this phenomenon, our detailed fate-mapping analyses indicated that the SNpr-VTA GABAergic neurons are generated outside midbrain, in the neuroepithelium of anterior hindbrain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurons can be divided into various classes according to their location, morphology, neurochemical identity and electrical properties. They form complex interconnected networks with precise roles for each cell type. GABAergic neurons expressing the calcium-binding protein parvalbumin (Pv) are mainly interneurons, which serve a coordinating function. Pv-cells modulate the activity of principal cells with high temporal precision. Abnormalities of Pv-interneuron activity in cortical areas have been linked to neuropsychiatric illnesses such as schizophrenia. Cerebellar Purkinje cells are known to be central to motor learning. They are the sole output from the layered cerebellar cortex to deep cerebellar nuclei. There are still many open questions about the precise role of Pv-neurons and Purkinje cells, many of which could be answered if one could achieve rapid, reversible cell-type specific modulation of the activity of these neurons and observe the subsequent changes at the whole-animal level. The aim of these studies was to develop a novel method for the modulation of Pv-neurons and Purkinje cells in vivo and to use this method to investigate the significance of inhibition in these neuronal types with a variety of behavioral experiments in addition to tissue autoradiography, electrophysiology and immunohistochemistry. The GABA(A) receptor γ2 subunit was ablated from Pv-neurons and Purkinje cells in four separate mouse lines. Pv-Δγ2 mice had wide-ranging behavioral alterations and increased GABA-insensitive binding indicative of an altered GABA(A) receptor composition, particularly in midbrain areas. PC-Δγ2 mice experienced little or no motor impairment despite the lack of inhibition in Purkinje cells. In Pv-Δγ2-partial rescue mice, a reversal of motor and cognitive deficits was observed in addition to restoration of the wild-type γ2F77 subunit to the reticular nucleus of thalamus and the cerebellar molecular layer. In PC-Δγ2-swap mice, zolpidem sensitivity was restored to Purkinje cells and the administration of systemic zolpidem evoked a transient motor impairment. On the basis of these results, it is concluded that this new method of cell-type specific modulation is a feasible way to modulate the activity of selected neuronal types. The importance of Purkinje cells to motor control supports previous studies, and the crucial involvement of Pv-neurons in a range of behavioral modalities is confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The zinc-finger transcription factors GATA2 and GATA3 in vertebrates belong to the six-member family that are essential regulators in the development of various organs. The aim of this study was to gain new information of the roles of GATA2 and GATA3 in inner ear morphogenesis and of the function of GATA2 in neuronal fate specification in the midbrain using genetically modified mouse and chicken embryos as models. A century ago the stepwise process of inner ear epithelial morphogenesis was described, but the molecular players regulating the cellular differentiation of the otic epithelium are still not fully resolved. This study provided novel data on GATA factor roles in several developmental processes during otic development. The expression analysis in chicken suggested that GATA2 and GATA3 possess redundant roles during otic cup and vesicle formation, but complementary cell-type specific functions during vestibular and cochlear morphogenesis. The comparative analysis between mouse and chicken Gata2 and Gata3 expression revealed many conserved aspects, especially during later stages of inner ear development, while the expression was more divergent at early stages. Namely, expression of both Gata genes was initiated earlier in chicken than mouse otic epithelium relative to the morphogenetic stages. Likewise, important differences concerning Gata3 expression in the otic cup epithelium were detected between mouse and chicken, suggesting that distinct molecular mechanisms regulate otic vesicle closure in different vertebrate species. Temporally distinct Gata2 and Gata3 expression was also found during otic ganglion formation in mouse and chicken. Targeted inactivation of Gata3 in mouse embryos caused aberrant morphology of the otic vesicle that in severe cases was disrupted into two parts, a dorsal and a ventral vesicle. Detailed analyses of Gata3 mutant embryos unveiled a crucial role for GATA3 in the initial inner ear morphogenetic event, the invagination of the otic placode. A large-scale comparative expression analysis suggested that GATA3 could control cell adhesion and motility in otic epithelium, which could be important for early morphogenesis. GATA3 was also identified as the first factor to directly regulate Fgf10 expression in the otic epithelium and could thus influence the development of the semicircular ducts. Despite the serious problems in the early inner ear development, the otic sensory fate establishment and some vestibular hair cell differentiation was observable in pharmacologically rescued Gata3-/- embryos. Cochlear sensory differentiation was, however, completely blocked so that no auditory hair cells were detected. In contrast to the early morphogenetic phenotype in Gata3-/- mutants, conditional inactivation of Gata2 in mouse embryos resulted in a relatively late growth defect of the three semicircular ducts. GATA2 was required for the proliferation of the vestibular nonsensory epithelium to support growing of the three ducts. Concurrently, with the role in epithelial semicircular ducts, GATA2 was also required for the mesenchymal cell clearance from the vestibular perilymphatic region between the membranous labyrinth and bony capsule. The gamma-aminobutyric acid-secreting (GABAergic) neurons in the midbrain are clinically relevant since they contribute to fear, anxiety, and addiction regulation. The molecular mechanisms regulating the GABAergic neuronal development, however, are largely unknown. Using tissue-specific mutagenesis in mice, GATA2 was characterized as a critical determinant of the GABAergic neuronal fate in the midbrain. In Gata2-deficient mouse midbrain, GABAergic neurons were not produced, instead the Gata2-mutant cells acquired a glutamatergic neuronal phenotype. Gain-of-function experiments in chicken also revealed that GATA2 was sufficient to induce GABAergic differentiation in the midbrain.