956 resultados para MGS3 stratigraphic segment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot–shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot–shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC = 0.75–0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC = 0.68–0.99) than the inexperienced rater (ICC = 0.38–0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint – MDD90 = 2.17–9.36°, tarsometatarsal joint – MDD90 = 1.03–9.29° and the metatarsophalangeal joint – MDD90 = 1.75–9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In gait analysis, both shoe mounted and skin mounted markers have been used to quantify the movement of the foot inside the shoe. However, these models have not been demonstrated as reliable or accurate in shod conditions. The purpose of this study was to develop an accurate and reliable marker set to describe foot-shoe complex kinematics during stance phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two main deformational phases are recognised in the Archaean Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia, primarily involving southover- north thrust faulting that repeated and thickened the stratigraphy, followed by east northeast – west-southwest shortening that resulted in macroscale folding of the greenstone lithologies. The domain preserves mid-greenschist facies metamorphic grade, with an increase to lower amphibolite metamorphic grade towards the north of the region. As a result of the deformation and metamorphism, individual stratigraphic horizons are difficult to trace continuously throughout the entire domain. Volcanological and sedimentological textures and structures, primary lithological contacts, petrography and geochemistry have been used to correlate lithofacies between faultbounded structural blocks. The correlated stratigraphic sequence for the Boorara Domain comprises quartzo-feldspathic turbidite packages, overlain by high-Mg tholeiitic basalt (lower basalt), coherent and clastic dacite facies, intrusive and extrusive komatiite units, an overlying komatiitic basalt unit (upper basalt), and at the stratigraphic top of the sequence, volcaniclastic quartz-rich turbidites. Reconstruction of the stratigraphy and consideration of emplacement dynamics has allowed reconstruction of the emplacement history and setting of the preserved sequence. This involves a felsic, mafic and ultramafic magmatic system emplaced as high-level intrusions, with localised emergent volcanic centres, into a submarine basin in which active sedimentation was occurring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. In vitro spine biomechanical testing has been central to many advances in understanding the physiology and pathology of the human spine. Owing to the difficulty in obtaining sufficient numbers of human samples to conduct these studies, animal spines have been accepted as a substitute model. However, it is difficult to compare results from different studies, as they use different preparation, testing and data collection methods. The aim of this study was to identify the effect of repeated cyclic loading on bovine spine segment stiffness. It also aimed to quantify the effect of multiple freeze-thaw sequences, as many tests would be difficult to complete in a single session [1-3]. Materials and Methods. Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments including levels T4-T11 (n=28). These were divided into two equal groups. Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37 degrees C and 100% humidity, using moment control to a maximum plus/minus 1.75 Nm with a loading rate of 0.3 Nm per second. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 100, 200, 300, 400 and 500. Group (B) were tested with 10 load cycles after each of 5 freeze thaw sequences. Data was collected from the tenth load cycle after each sequence. Statistical analysis of the data was performed using paired samples t-tests, ANOVA and generalized estimating equations. Results. The data were confirmed as having a normal distribution. 1. There were significant reductions in mean stiffness in flexion/extension (-20%; P=0.001) and lateral bending (-17%; P=0.009) over the 500 load cycles. However, there was no statistically significant change in axial rotation (P=0.152) 2. There was no statistically significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (p=0.879) and axial rotation (p=0.07). However, there was a significant reduction in stiffness in lateral bending (-26%; p=0.007) Conclusion. Biomechanical testing of immature bovine spine motion segments requires careful interpretation. The effect of the number of load cycles as well as the number of freeze-thaw cycles on the stiffness of the motion segments depends on the axis of main movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete nucleotide sequence of genome segment S4 of rice ragged stunt oryzavirus (RRSV, Thai-isolate) was determined. The 3823 bp sequence contains two large open reading frames (ORFs). ORF1, spanning nucleotides 12 to 3776, is capable of encoding a protein of M(r) 141,380 (P4a). The P4a amino acid sequence predicted from the nucleotide sequence contains sequence motifs conserved in RNA-dependent RNA polymerases (RDRPs). When compared for evolutionary relationships with RDRPs of other reoviruses using the amino acid sequences around the conserved GDD motif, P4a was shown to be more related to Nilaparvata lugens reovirus and reovirus serotype 3 than to rice dwarf phytoreovirus, bovine rotavirus or bluetongue virus. The ORF2, spanning nucleotides 491 to 1468, is out of frame with ORF1 and is capable of encoding a protein of 36, 920 (P4b). Coupled in vitro transcription-translation from cloned ORF2 in wheat germ extract confirmed the existence of ORF2 but in vivo production and possible function of P4b is yet to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleotide sequence of DNA complementary to rice ragged stunt oryzavirus (RRSV) genome segment 8 (S8) of an isolate from Thailand was determined. RRSV S8 is 1 914 bp in size and contains a single large open reading frame (ORF) spanning nucleotides 23 to 1 810 which is capable of encoding a protein of M(r) 67 348. The N-terminal amino acid sequence of a ~43K virion polypeptide matched to that inferred for an internal region of the S8 coding sequence. These data suggest that the 43K protein is encoded by S8 and is derived by a proteolytic cleavage. Predicted polypeptide sizes from this possible cleavage of S8 protein are 26K and 42K. Polyclonal antibodies raised against a maltose binding protein (MBP)-S8 fusion polypeptide (expressed in Escherichia coli) recognised four RRSV particle associated polypeptides of M(r) 67K, 46K, 43K and 26K and all except the 26K polypeptide were also highly immunoreactive to polyclonal antibodies raised against purified RRSV particles. Cleavage of the MBP-S8 fusion polypeptide with protease Factor X produced the expected 40K MBP and two polypeptides of apparent M(r) 46K and 26K. Antibodies to purified RRSV particles reacted strongly with the intact fusion protein and the 46K cleavage product but weakly to the 26K product. Furthermore, in vitro transcription and translation of the S8 coding region revealed a post-translational self cleavage of the 67K polypeptide to 46K and 26K products. These data indicate that S8 encodes a structural polypeptide, the majority of which is auto- catalytically cleaved to 26K and 46K proteins. The data also suggest that the 26K protein is the self cleaving protease and that the 46K product is further processed or undergoes stable conformational changes to a ~43K major capsid protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete nucleotide sequence of the genome segment 5 (S5) of a Thai isolate of rice ragged stunt virus (RRSV) was determined. The 2682 nucleotide sequence contains a single long open reading frame capable of encoding a polypeptide with a molecular mass of ~91 kDa. Polypeptides encoded by various truncated cDNAs of S5 were expressed using the pGEX fusion protein vector and the highest level of fusion protein was obtained from a construct encoding a hydrophilic region of S5 protein. Antibodies raised against this fusion protein recognized a minor polypeptide, with a molecular mass of ~ 91 kDa, that was present in purified preparations of RRSV particles, infected insect vectors and infected rice plants. This indicates that RRSV S5 encodes a minor structural protein. Comparing the RRSV S5 sequence with sequences of other reo-viruses did not reveal any significant sequence similarities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subterranean clover stunt disease is an economically important aphid-borne virus disease affecting certain pasture and grain legumes in Australia. The virus associated with the disease, subterranean clover stunt virus (SCSV), was previously found to be representative of a new type of single-stranded DNA virus. Analysis of the virion DNA and restriction mapping of double-stranded cDNA synthesized from virion DNA suggested that SCSV has a segmented genome composed of 3 or 4 different species of circular ssDNA each of about 850-880 nucleotides. To further investigate the complexity of the SCSV genome, we have isolated the replicative form DNA from infected pea and from it prepared putative full-length clones representing the SCSV genome segments. Analysis of these clones by restriction mapping indicated that clones representing at least 4 distinct genomic segments were obtained. This method is thus suitable for generating an extensive genomic library of novel ssDNA viruses containing multiple genome segments such as SCSV and banana bunchy top virus. The N-terminal amino acid sequence and amino acid composition of the coat protein of SCSV were determined. Comparison of the amino acid sequence with partial DNA sequence data, and the distinctly different restriction maps obtained for the full-length clones suggested that only one of these clones contained the coat protein gene. The results confirmed that SCSV has a functionally divided genome composed of several distinct ssDNA circles each of about 1 kb.