989 resultados para MGO
Resumo:
In this work, we experimentally showed that the spontaneous segregation of MgO as surface excess in MgO doped SnO(2) nanoparticles plays an important role in the system`s energetics and stability. Using Xray fluorescence in specially treated samples, we quantitatively determined the fraction of MgO forming surface excess when doping SnO(2) with several different concentrations and established a relationship between this amount and the surface energy of the nanoparticles using the Gibbs approach. We concluded that the amount of Mg ions on the surface was directly related to the nanoparticles total free energy, in a sense that the dopant will always spontaneously distribute itself to minimize it if enough diffusion is provided. Because we were dealing with nanosized particles, the effect of MgO on the surface was particularly important and has a direct effect on the equilibrium particle size (nanoparticle stability), such that the lower the surface energy is, the smaller the particle sizes are, evidencing and quantifying the thermodynamic basis of using additives to control SnO(2) nanoparticles stability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nanomaterials have triggered excitement in both fundamental science and technological applications in several fields However, the same characteristic high interface area that is responsible for their unique properties causes unconventional instability, often leading to local collapsing during application Thermodynamically, this can be attributed to an increased contribution of the interface to the free energy, activating phenomena such as sintering and grain growth The lack of reliable interface energy data has restricted the development of conceptual models to allow the control of nanoparticle stability on a thermodynamic basis. Here we introduce a novel and accessible methodology to measure interface energy of nanoparticles exploiting the heat released during sintering to establish a quantitative relation between the solid solid and solid vapor interface energies. We exploited this method in MgO and ZnO nanoparticles and determined that the ratio between the solid solid and solid vapor interface energy is 11 for MgO and 0.7 for ZnO. We then discuss that this ratio is responsible for a thermodynamic metastable state that may prevent collapsing of nanoparticles and, therefore, may be used as a tool to design long-term stable nanoparticles.
Resumo:
Equilibrium phase relations in the PbO-Al2O3-SiO2 system have been investigated experimentally by means of high-temperature equilibration, quenching, and electron probe X-ray microanalysis (EPMA). The system has 21 primary phase fields including three monoxides (PbO, Al2O3, and SiO2), seven binary compounds (Al6Si2O13, PbAl2O4, PbAl12O19, Pb2Al2O5, PbSiO3, Pb2SiO4, and Pb4SiO6), and eleven ternary compounds (PbAl2Si2O8, Pb3Al10SiO20, Pb4Al2Si2O11, Pb4Al4SiO12, Pb4Al4Si3O16, Pb4Al4Si5O20, Pb5Al2Si10O28, Pb6Al2Si6O21, Pb8Al2Si4O19, Pb12Al2Si17O49, and Pb12Al2Si20O55). Three new ternary compounds, Pb4Al4SiO12, Pb4Al4Si5O20, and Pb12Al2Si17O49, were observed and characterized by EPMA. No extensive solid solution in any of the compounds was found in the present study. The liquidus isotherms were experimentally determined in most of the primary phase fields in the temperature range from 923 to 1873 K, and the ternary phase diagram of the PbO-Al2O3-SiO2 System has been constructed.
Resumo:
High-resolution transmission electron microscopy (HRTEM) was used to study the phase of orthorhombic ZrO2 formed in magnesia partially stabilized zirconia (MgO-PSZ) during HRTEM specimen preparation. Based on the three reported crystal structures of orthorhombic ZrO2, with the space groups Pbcm, Pbc2(1) and Pbca, here it is shown that orthorhombic ZrO2 formed in MgO-PSZ has the Pbcm structure.
Resumo:
Apesar do elevado potencial do metal magnésio como material útil em várias áreas cien-tíficas e tecnológicas, os seus métodos de produção tradicionais têm um impacto fortemente prejudicial no ambiente e um custo elevado. Este facto é um incentivo à procura de novas so-luções, nomeadamente as que recorrem à utilização da radiação solar partindo do óxido de magnésio. Alguns estudos têm já sido feitos nesse sentido, utilizando laser solar ou radiação solar concentrada mas a utilização concertada dos dois não tinha sido feita até ao momento. Neste trabalho, a exequibilidade da utilização concertada destes dois métodos será avaliada e será estudado o comportamento do óxido de magnésio face à radiação que nele incide.
Resumo:
Neste trabalho, que faz parte de uma série de pesquisas relacionadas com a neutralização do caldo de cana nas usinas de açúcar, é descrita a técnica de determinação quelatométrica do CaO e MgO totais e CaO disponível da cal. Os resultados fornecidos pela técnica preconizada foram comparados com aqueles obtidos através do emprêgo de métodos usuais. São também apresentados os primeiros estudos efetuados a respeito da capacidade neutralizadora da cal, em função do seu teor em oxido de calcio total e disponível, quando empregada na forma solida, na neutralização do caldo de cana.
Resumo:
Different aspects of the structure-magnetism and morphology-magnetism correlation in the ultrathin limit are studied in epitaxial Fe films grown on MgO(001). In the initial stages of growth the presence of substrate steps, intrinsically higher than an Fe atomic layer, prevent the connection between Fe islands and hence the formation of large volume magnetic regions. This is proposed as an explanation to the superparamagnetic nature of ultrathin Fe films grown on MgO in addition to the usually considered islanded, or Vollmer-Weber, growth. Using this model, we explain the observed transition from superparamagnetism to ferromagnetism for Fe coverages above 3 monolayers (ML). However, even though ferromagnetism and magnetocrystalline anisotropy are observed for 4 ML, complete coverage of the MgO substrate by the Fe ultrathin films only occurs around 6 ML as determined by polar Kerr spectra and simulations that consider different coverage situations. In annealed 3.5 ML Fe films, shape or configurational anisotropy dominates the intrinsic magnetocrystalline anisotropy, due to an annealing induced continuous to islanded morphological transition. A small interface anisotropy in thicker films is observed, probably due to dislocations observed at the Fe¿MgO(001) interface.
Resumo:
Epitaxial Fe/MgO heterostructures have been grown on Si(001) by a combination of sputtering and laser ablation deposition techniques. The growth of MgO on Si(001) is mainly determined by the nature of the interface, with large lattice mismatch and the presence of an amorphous layer of unclear origin. Reflection high energy electron diffraction patterns of this MgO buffer layer are characteristic of an epitaxial, but disordered, structure. The structural quality of subsequent Fe and MgO layers continuously improves due to the better lattice match and the burial of defects. A weak uniaxial in-plane magnetic anisotropy is found superimposed on the expected cubic biaxial anisotropy. This additional anisotropy, of interfacial nature and often found in Fe/MgO and Fe/MgO/GaAs(001) systems, is less intense here due to the poorer MgO/Si interface quality compared with that of other systems. From the evolution of the anisotropy field with film thickness, magnetic anisotropy is also found to depend on the crystal quality. Kerr measurements of a Fe/MgO multilayered structure grown on Si show two different switching fields, suggesting magnetic coupling of two of the three Fe layers. Nevertheless, due to the little sensitivity to the bottom Fe film, independent switching of the three layers cannot be ruled out.
Resumo:
We communicate a detailed study of the epitaxial growth of CeO2 on MgO. The key feature of the growth is the dependence of the in¿plane orientation of the CeO2 epitaxial layer on the MgO surface morphology. Atomic force microscopic (AFM) measurements, x¿ray analyses, as well as high¿resolution transmission electron microscopy (HRTEM) investigations reveal that on rough substrates a cube¿on¿cube growth of CeO2 on MgO occurs while on smooth substrates the CeO2 unit cell is rotated around the surface normal by 45° with respect to the MgO unit cell when the deposition rate is low (~0.3 Å/s) during the first stages of growth. This growth mechanism can be used for a defined fabrication of 45° grain boundaries in the CeO2 layer by controlling the surface roughness of the MgO substrate. This report demonstrates that these 45° grain boundaries may be used to fabricate YBa2Cu3O7¿x Josephson junctions.
Resumo:
Epitaxial thin films of Y¿doped SrZrO3 have been grown on MgO(001) by pulsed laser deposition. The deposition process has been performed at temperatures of 1000¿1200¿°C and at an oxygen pressure of 1.5×10¿1 mbar. The samples are characterized by Rutherford backscattering spectrometry/channeling (RBS/C) and x¿ray diffraction (XRD). We found an epitaxial relationship of SrZrO3 (0k0) [101]¿MgO (001) [100]. Good crystalline quality is confirmed by RBS/C minimum yield values of 9% and a FWHM of 0.35° of the XRD rocking curve.
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
The observation of coherent tunnelling in Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ was a crucial discovery in the realm of the Jahn-Teller (JT) effect. The main reasons favoring this dynamic behavior are now clarified through ab initio calculations on Cu2+ - and Ag2+ -doped cubic oxides. Small JT distortions and an unexpected low anharmonicity of the eg JT mode are behind energy barriers smaller than 25 cm-1 derived through CASPT2 calculations for Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ . The low anharmonicity is shown to come from a strong vibrational coupling of MO610- units (M=Cu,Ag) to the host lattice. The average distance between the d9 impurity and ligands is found to vary significantly on passing from MgO to SrO following to a good extent the lattice parameter.
Resumo:
Luminescence spectroscopy has been used to characterize MgO films prepared by rf-sputtering. A clear correlation is found between the appearance of an emission peak centered at approximately 460 nm and the detection of ferromagnetic ordering in the samples. We suggest that cationic vacancies are responsible for the blue-light emission by introducing p states into the electronic band-gap. In accordance with this, our results strongly indicate that cationic vacancies are at the heart of the appearance of long-range magnetic ordering in MgO films.