789 resultados para METAL-METAL INTERACTIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subsequent chapters of the Thesis deal with the toxic effects of mercury, copper, zinc und~1ead on these bivalve molluecs, their accumulation and distribution among various organs of the animals and also the motel retention winstica by the three species. Static biousauy tests have been conducted in these studies. It was found that the concentrations of the various metals studied in these organism are well below the permitted level given far ease ahellfienes (crab and ehrimgi and that these maliuscs are very good integrators ef trace metals from their environment and may be used as an indicator organism sf metal pallutaute. The present investigutionsemphaeie the need for a clean coastal water and gives a serious warning regarding the possiblc route of heavy metals in ta human body thraugh marine food chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional nucleic acids (FNA), including nucleic acids catalysts (ribozymes and DNAzymes) and ligands (aptamers), have been discovered in nature or isolated in a laboratory through a process called in vitro selection. They are nucleic acids with functions similar to protein enzymes or antibodies. They have been developed into sensors with high sensitivity and selectivity; it is realized by converting the reaction catalyzed by a DNAzyme/ribozyme or the binding event of an aptamer to a fluorescent, colorimetric or electrochemical signal. While a number of studies have been reported for in vitro sensing using DNAzymes or aptamers, there are few reports on in vivo sensing or imaging. MRI is a non-invasive imaging technique; smart MRI contrast agents were synthesized for molecular imaging purposes. However, their rational design remains a challenge due to the difficulty to predict molecular interactions. Chapter 2 focuses on rational design of smart T1-weighted MRI contrast agents with high specificity based on DNAzymes and aptamers. It was realized by changing the molecular weight of the gadolinium conjugated DNA strand with the analytes, which lead to analyte-specific water proton relaxation responses and contrast changes on an MRI image. The designs are general; the high selectivity of FNA was retained. Most FNA-based fluorescent sensors require covalent labeling of fluorophore/quencher to FNAs, which incurrs extra expenses and could interfere the function of FNAs. Chapter 3 describes a new sensor design avoiding the covalent labeling of fluorophore and quencher. The fluorescence of malachite green (MG) was regulated by the presence of adenosine. Conjugate of aptamers of MG and adenosine and a bridge strand were annealed in a solution containing MG. The MG aptamer did not bind MG because of its hybridization to the bridge strand, resulting in low fluorescence signal of MG. The hybridization was weakened in the presence of adenosine, leading to the binding of MG to its aptamer and a fluorescence increase. The sensor has comparable detection limit (20 micromolar) and specificity to its labeled derivatives. Enzymatic activity of most DNAzymes requires metal cations. The research on the metal-DNAzyme interaction is of interest and challenge to scientists because of the lack of structural information. Chapters 4 presents the research on the characterization of the interaction between a Cu2+-dependent DNAzyme and Cu2+. Electron paramagnetic resonance (EPR) and UV-Vis spectroscopy were used to probe the binding of Cu2+ to the DNAzyme; circular dichroism was used to probe the conformational change of the DNAzyme induced by Cu2+. It was proposed that the conformational change by the Cu2+ binding is important for the activity of the DNAzyme. Chapter 5 reports the dependence of the activity of 8-17 DNAzyme on the presence of both Pb2+ and other metal cations including Zn2+, Cd2+ and Mg2+. It was discovered that presence of those metal cations can be cooperative or inhibitive to 8-17 activity. It is hypothesized that the 8-17 DNAzyme had multiple binding sites for metal cations based on the results. Cisplatin is effective killing tumor cells, but with significant side effects, which can be minimized by its targeted delivery. Chapter 6 focuses on the effort to functionalize liposomes encapsulating cisplatin by an aptamer that selectively bind nucleolin, an overexpressed protein by breast cancer cells. The study proved the selective cytotoxicity to breast cancer cells of the aptamer-functionalized liposome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molybdenum and tungsten complexes containing the pypzH (3-(2-pyridyl)pyrazole) ligand as a chelating bidentate are prepared: [Mo(CO)(4)(pypzH)], cis-[MoBr(eta(3)-allyl)(CO)(2)(pypzH)], cis-[MoCl(eta(3)-methallyl)(CO)(2)(pypzH)], [MI2(CO)(3)(pypzH)] (M = Mo, W) from [Mo(CO)(4)(NBD)] or the adequate bis(acetonitrile) complexes. The deprotonation of the molybdenum allyl or methallyl complexes affords the bimetallic complexes [cis-{Mo(eta(3)-allyl)(CO)(2)(mu(2)-pypz)}](2) or [cis-{Mo(eta(3)-methallyl)(CO)(2)(mu(2)-pypz)}](2) (mu(2)-pypz = mu(2)-3-(2-pyridyl-kappa N-1) pyrazolate-2 kappa N-1). The allyl complex was subjected to an electrochemical study, which shows a marked connection between both metallic centres through the bridging pyridylpyrazolates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sabendo-se que a fadiga é uma redução gradual da capacidade de carga do componente pela ruptura lenta e gradual do material. E que este defeito decorre do avanço infinitesimal de microtrincas, que se formam no interior do material, imperceptível a olho nu, como também é notório que a presença dos elementos de liga nos aços, propicia alterações nas propriedades metalurgias e mecânicas no material, aplicado à obra. Por outro lado, ao ser submetido a processamentos dos mais diversos, os mesmos, deformam nas zonas elásticas, plásticas e ao fim rompem-se. Ressaltando-se o objetivo deste estudo, destina se abordar as uniões soldadas, nos estágios em que ficam sujeitas a altas temperaturas e resfriam sem controle, até a temperatura ambiente. Ao fim, são solicitados por carregamentos cíclicos constantes ou alternados. Nesta particularidade, espera-se detectar mudanças estruturais profundas na Zona Termicamente Afetada – ZTA, em razão do superaquecimento sofrido, tanto na proximidade do ponto central da poça de fusão como na região localizada na vizinhança. Como não dispomos de parâmetros suficientes e necessários ao controle destas alterações, propomos analisar a ZTA da junta soldada, com a finalidade de avaliar o comportamento metalúrgico e suas implicações causadas pelas interações gás-metal. Analisar os efeitos resultantes do triangulo formado pelo material base aço AISI/SAE 4340, SAE 1020 chanfrados em V e o eletrodo revestido E-6013. A análise da estrutura será realizada pelas técnicas de ensaio metalográfico usando o método da microscopia óptica – MO o qual é de ampla difusão nas comunicações técnicas e cientificas, através das quais, distinguirão as transformações multifásicas. Transformações estas, distintas pelas transformações das austenitas diretas em martensitas sem passar pelas ferritas e perlitas. Com estas identidades, o metalógrafo pode caracterizar e predizer as reações futuras das estruturas mediante a análise das solicitações, a que possam estar submetidas. Para analisar o comportamento em fadiga dos materiais em questão, adota-se como parâmetro auxiliar, o ensaio do pêndulo de Charpy. Portanto, pelos resultados obtidos, conclui-se que as estruturas são comprometidas por tensões internas em conseqüência fragilizam, mas o procedimento de soldagem pode ser adotado, seguido de recozimento para alivio de tensões, se não fizer trincas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various oxide-promoted Ni catalysts supported on activated carbon were prepared, and the effect of promoters on the surface structure and properties of Ni catalysts was studied. Physical adsorption (Na adsorption), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It is found that nickel is fairly uniformly distributed in the pores of the carbon support. Addition of promoters produces a more homogeneous distribution of nickel ion in carbon. However, distributions of promoters in the pores are varying. Addition of promoters increases the dispersion of nickel in carbon. Promoters also change the interaction between the carbon and Ni, resulting in significantly different behaviors of catalysts under various environments. CaO and MgO promoters improve the reactivity of nickel catalysts with O-2 but retard the interaction between nickel oxide and carbon. La2O3 shows some inhibiting effect on the interactions between nickel oxide and oxygen as well as carbon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(l) per CopZ and two copper(l) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(1)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(1)(2)CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(l)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper. from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(l) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange: a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Química Sustentável, especialidade de Química-Física Inorgânica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nickel and palladium dispersed on titania support were submitted to reductive treatment, under hydrogen, at 200 and 500 ºC. After the reductive thermal treatment the materials were exposed to carbon monoxide (10 Torr) and analyzed in the infrared region. The increasing of the electronic density in the metallic d subshell, produced by the reductive thermal treatment, was monitored by the infrared stretching band shift of carbon monoxide adsorbed and it was interpreted as a consequence of the metal-support interactions. The highest effect was observed for Pd/TiO2 system. From the FTIR spectra was also observed that the hydrogen spillover was stronger on Pd/TiO2 than Ni/TiO2 system.