996 resultados para METABOLIC STABILITY
Resumo:
The development of metabolically stable radiolabeled gastrin analogues with suitable pharmacokinetics is a topic of recent research activity. These imaging vectors are of interest because the gastrin/CCK2 receptor is highly overexpressed in different tumors such as medullary thyroid cancer, neuroendocrine tumors, and SCLC. The drawback of current targeting agents is either their metabolic instability or their high kidney uptake. We present the synthesis and in vitro and in vivo evaluation of 11 (111)In-labeled DOTA-conjugated peptides that differ by their spacer between the peptide and the chelate. We introduced uncharged but hydrophilic spacers such as oligoethyleneglycol, serine, and glutamine. The affinity of all radiopeptides was high with IC(50) values between 0.5 and 4.8 nM. The improvement of human serum stability is 500-fold within this series of compounds. In addition the kidney uptake could be lowered distinctly and the tumor-to-kidney ratio improved almost 60-fold if compared with radiotracers having charged spacers such as glutamic acid.
Resumo:
Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the result as in vivo intrinsic clearance. Additional guidance is provided on the care and handling of test animals, design and interpretation of preliminary studies, and development of analytical methods. Although initially developed to predict metabolism impacts on chemical accumulation by fish, these procedures can be used to support a broad range of scientific and risk assessment activities including evaluation of emerging chemical contaminants and improved interpretation of toxicity testing results. These protocols have been designed for rainbow trout and can be adapted to other species as long as species-specific considerations are modified accordingly (e.g., fish maintenance and incubation mixture temperature). Rainbow trout is a cold-water species. Protocols for other species (e.g., carp, a warm-water species) can be developed based on these procedures as long as the specific considerations are taken into account.
Resumo:
Trout provide a relatively easy source of hepatocytes that can be cryopreserved and used for a range of applications including toxicity testing and determination of intrinsic clearance. Standard protocols for isolating, cryopreserving, and thawing rainbow trout hepatocytes are described, along with procedures for using fresh or cryopreserved hepatocytes to assess metabolic stability of xenobiotics in fish by means of a substrate depletion approach. Variations on these methods, troubleshooting tips, and directions for use of extrapolation factors to express results in terms of in vivo intrinsic clearance are included. These protocols have been developed for rainbow trout, but can be adapted to other fish species with appropriate considerations.
Resumo:
Dissertação de mestrado em Química Medicinal
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted in developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas little has been done to predict the hydrolytic activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES1. The study involves both docking analyses of known substrates to develop predictive models, and molecular dynamics (MD) simulations to reveal the in situ behavior of substrates and products, with particular attention being paid to the influence of their ionization state. The results emphasize some crucial properties of the hCES1 catalytic cavity, confirming that as a trend with several exceptions, hCES1 prefers substrates with relatively smaller and somewhat polar alkyl/aryl groups and larger hydrophobic acyl moieties. The docking results underline the usefulness of the hydrophobic interaction score proposed here, which allows a robust prediction of hCES1 catalysis, while the MD simulations show the different behavior of substrates and products in the enzyme cavity, suggesting in particular that basic substrates interact with the enzyme in their unprotonated form.
Resumo:
En els darrers 30 anys, els anàlegs de nucleòsids han estat una part essencial de la teràpia antiviral. Més recentment, els anàlegs carbocíclics de nucleòsids s'han convertit en importants objectius pel desenvolupament de nous agents terapèutics antivirals i antitumorals, en tant que l'absència de l'enllaç N-glicosídic els confereix una major estabilitat davant l'acció de les fosforilases. Per altra banda, s'ha descrit que alguns nucleòsids de configuració L presenten, en alguns casos, una bona activitat antiviral, una major estabilitat metabòlica i una toxicitat inferior a la dels seus homòlegs de configuració natural. El present treball planteja la síntesi estereoselectiva de derivats ciclobutènics de L-nucleòsids com a agents terapèutics, susceptibles de presentar una major activitat antiviral i una menor toxicitat que els agents actuals. Per assolir aquest objectiu, s'ha construït l'anell ciclobutènic mitjançant una reacció de fotocicloaddició [2+2]. Al mateix temps, s'ha desenvolupat un estudi de la influència del dissolvent en la reacció de fotocicloaddició [2+2] d'enones a alquens halogenats. A més, s'han estudiat diverses condicions de treball per dur a terme la reacció de deshalogenació dels derivats clorats preparats amb la metodologia anterior, utilitzant Zn com a reductor i amb un sistema d'escalfament per microones com a substituent dels mètodes d'escalfament convencionals. Aquest estudi ha permès disminuir notablement el temps d'aquesta reacció, passant de 7 hores a 20 minuts. Les condicions òptimes d'ambdues reaccions determinades amb aquests estudis han permès preparar l'intermedi clau per a la introducció de les bases nitrogenades, essent aquest un potencial precursor dels anàlegs ciclobutènics de nucleòsids, així com sintetitzar el primer producte de la ruta sintètica dissenyada que presenta la base nitrogenada a la seva estructura.
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.
Resumo:
Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.
Resumo:
The aims of this review were 1) to compile a large number of reliable literature data on the metabolic hydrolysis of medicinal carbamates and 2) to extract from such data a qualitative relation between molecular structure and lability to metabolic hydrolysis. The compounds were classified according to the nature of their substituents (R³OCONR&supl;R²), and a metabolic lability score was calculated for each class. A trend emerged, such that the metabolic lability of carbamates decreased (i.e., their metabolic stability increased), in the following series: Aryl-OCO-NHAlkyl >> Alkyl-OCO-NHAlkyl ~ Alkyl-OCO-N(Alkyl)? ? Alkyl-OCO-N(endocyclic) ? Aryl-OCO-N(Alkyl)? ~ Aryl-OCO-N(endocyclic) ? Alkyl-OCO-NHAryl ~ Alkyl-OCO-NHAcyl?>> Alkyl-OCO-NH? > Cyclic carbamates. This trend should prove useful in the design of carbamates as drugs or prodrugs.
Resumo:
Thèse réalisée en co-tutelle avec l'Université Claude Bernard de Lyon 1, en France.
Resumo:
Le [6]-gingérol est un analogue structurel de la capsaïcine, une molécule agoniste au récepteurs TRPV1 et ayant des propriétés thérapeutiques connues dans le traitement de la douleur. Deux objectifs principaux ont été poursuivis lors de la réalisation de ce projet de recherche. D’abord, établir une meilleure caractérisation du métabolisme du [6]-gingérol chez le rat. Pour ce faire, une méthode sensible et spécifique pour la quantification du [6]-gingérol et ses métabolites par HPLC-ESI/MS/MS a été développée. Une étude de stabilité métabolique in vitro utilisant des microsomes hépatiques de rats a ensuite été réalisée. Les résultats démontrent une dégradation lente avec un temps de demi-vie de 163 minutes et une clairance intrinsèque relativement basse de 0.0043 mL/min. D’autres analyses ont ensuite été performées pour caractériser les métabolites in vitro et in vivo. Trois principaux métabolites de phase I et quatre métabolites de phase II ont été identifiés par HPLC-MS/MS et HPLC-MSD TOF. Les résultats suggèrent que le principal métabolite excrété dans l’urine est un glucuronide du [6]-gingérol hydroxylé. Le second objectif de ce projet était de déterminer l’effet central du [6]-gingérol sur la douleur neuropathique lorsqu’injecté par voie intrathécale. La distribution de la molécule a d’abord été évaluée suite à une administration intra-péritonéale de 40 mg/kg de [6]-gingérol et les ratios des concentrations cerveau-plasma et moelle épinière-plasma (0.73 et 1.7, respectivement) suggèrent que le [6]-gingérol se distribue efficacement au niveau du système nerveux central. Une injection intrathécale de 10 μg de [6]-gingérol à été performée chez les rats suite à l’induction de douleur par la pose de ligatures au niveau du nerf sciatique. Les résultats suggèrent une réduction significative de l’allodynie mécanique et de l’hyperalgésie thermique à 30 min, 2 h et 4 h suivant l’injection (p < 0.05, p < 0.01 et p < 0.001). Le [6]-gingérol se distribue donc adéquatement au niveau du système nerveux central des rats, permettant une action au niveau des récepteurs TRPV1. Ainsi, le [6]-gingérol pourrait soulager la douleur neuropathique en agissant centralement au niveau de la moelle épinière.
Resumo:
Ketamine is widely used in medicine in combination with several benzodiazepines including midazolam. The objectives of this study were to develop a novel HPLC-MS/SRM method capable of quantifying ketamine and norketamine using an isotopic dilution strategy in biological matrices and study the formation of norketamine, the principal metabolite of ketamine with and without the presence of midazolam, a well-known CYP3A substrate. The chromatographic separation was achieved using a Thermo Betasil Phenyl 100 x 2 mm column combined with an isocratic mobile phase composed of acetonitrile, methanol, water and formic acid (60:20:20:0.4) at a flow rate of 300 μL/min. The mass spectrometer was operating in selected reaction monitoring mode and the analytical range was set at 0.05–50 μM. The precision (%CV) and accuracy (%NOM) observed were ranging from 3.9–7.8 and 95.9.2–111.1% respectively. The initial rate of formation of norketamine was determined using various ketamine concentration and Km values of 18.4 μM, 13.8 μM and 30.8 μM for rat, dog and human liver S9 fractions were observed respectively. The metabolic stability of ketamine on liver S9 fractions was significantly higher in human (T1/2 = 159.4 min) compared with rat (T1/2 = 12.6 min) and dog (T1/2 = 7.3 min) liver S9 fractions. Moreover significantly lower IC50 and Ki values observed in human compared with rat and dog liver S9 fractions. Experiments with cDNA expressed CYP3A enzymes showed the formation of norketamine is mediated by CYP3A but results suggest an important contribution from others isoenzymes, most likely CYP2C particularly in rat.
Resumo:
Heart transplantation (HT) represents one of the greatest advances in medicine over the last decades. It is indicated for patients with severe heart disease unresponsive to clinical treatment and conventional surgery, poor short-term prognosis and a 1- year mortality rate over 40%. HT has improved survival worldwide (80% in the first year, 70% in five years and 60% in ten years). However, the procedure has been associated with weight change and increased risk of secondary conditions such as diabetes, hypertension, dyslipidemia and obesity due to immunosuppressive therapy following transplantation. The objective of this study was to determine the impact of weight change on the metabolic stability of HT patients. The study was retrospective with data collected from the records of 82 adult patients (83% male; average age 45.06±12.04 years) submitted to HT between October 1997 and December 2005 at a transplantation service in Ceará (Brazil). The selected outcome variables (biopathological profile, weight and body mass index―BMI) were related to biochemical and metabolic change. The results were expressed in terms of frequency, measures of central tendency, Student s t test and Pearson s correlation coefficients. The analysis showed that following HT the average global BMI increased from 23.77±3.68kg/m2 to 25.48±3.92kg/m2 in the first year and to 28.38±4.97kg/m2 in the fifth. Overweight/obese patients (BMI ≥ 25 kg/m2) had higher average levels of glucose, total cholesterol, low-density lipoprotein and triglycerides than patients with eutrophy/malnutrition (BMI < 25 kg/m2). In conclusion, overweight/obese patients were likely to present higher average levels of glucose, triglycerides, total cholesterol and fractions than patients with eutrophy/malnutrition, indicating a direct and significant relation between nutritional status and weight change in the metabolic profile of HT patients
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
This study evaluated the antioxidant activity of five resveratrol analogs by relating the activity of the molecule with its chemical structure. The five resveratrol analogs were synthesized and the antioxidant activity was evaluated using the DPPH method. The resveratrol was used as the reference standard. A descriptive statistical analysis and ANOVA followed by the Tukey test, with the aid of software. The antioxidant activity of resveratrol analogs was considered statistically different, with the analog A which showed activity superior to the others. The five analogs presented lower antioxidant activity than the reference standard (p <0.001). According to the findings, hydroxylation was the molecular modification that gave the best evaluated antioxidant activity result. Resveratrol analogs may have an important antioxidative activity, but with the one with the higher IC50 was presented by the natural compound.