844 resultados para METABOLIC DYSFUNCTIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperandrogenemia predisposes an organism toward developing impaired insulin sensitivity. The aim of our study was to evaluate endocrine and metabolic effects during early allostasis induced by a fructose-rich diet (FRD) in normal (control; CT) and neonatal-androgenized (testosterone propionate; TP) female adult rats. CT and TP rats were fed either a normal diet (ND) or an FRD for 3 weeks immediately before the day of study, which was at age 100 days. Energy intake, body weight (BW), parametrial (PM) fat characteristics, and endocrine/metabolic biomarkers were then evaluated. Daily energy intake was similar in CT and TP rats regardless of the differences in diet. When compared with CT-ND rats, the TP-ND rats were heavier, had larger PM fat, and were characterized by basal hypoadiponectinemia and enhanced plasma levels of non-esterified fatty acid (NEFA), plasminogen activator inhibitor-1 (PAI-1), and leptin. FRD-fed CT rats, when compared with CT-ND rats, had high plasma levels of NEFA, triglyceride (TG), PAI-1, leptin, and adiponectin. The TP-FRD rats, when compared with TP-ND rats, displayed enhanced leptinemia and triglyceridemia, and were hyperinsulinemic, with glucose intolerance. The PM fat taken from TP rats displayed increase in the size of adipocytes, decrease in adiponectin (protein/gene), and a greater abundance of the leptin gene. PM adipocyte response to insulin was impaired in CT-FRD, TP-ND, and TP-FRD rats. A very short duration of isocaloric FRD intake in TP rats induced severe metabolic dysfunction at the reproductive age. Our study supports the hypothesis that the early-androgenized female rat phenotype is highly susceptible to developing endocrine/metabolic dysfunction. In turn, these abnormalities enhance the risk of metabolic syndrome, obesity, type 2 diabetes, and cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recent studies have identified that a higher resting heart rate (RHR) is associated with elevated blood pressure, independent of body fatness, age and ethnicity. However, it is still unclear whether RHR can also be applied as a screening for other risk factors, such as hyperglycemia and dyslipidemia. Thus, the purpose of the presented study was to analyze the association between RHR, lipid profile and fasting glucose in obese children and adolescents.Methods: The sample was composed of 180 obese children and adolescents, aged between 7-16 years. Whole-body and segmental body composition were estimated by Dual-energy X-ray absorptiometry. Resting heart rate (RHR) was measured by heart rate monitors. The fasting blood samples were analyzed for serum triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose, using the colorimetric method.Results: Fasting glucose, TC, triglycerides, HDL-C, LDL-C and RHR were similar in both genders. The group of obese subjects with a higher RHR presented, at a lower age, higher triglycerides and TC. There was a significant relationship between RHR, triglycerides and TC. In the multivariate model, triglycerides and TC maintained a significant relationship with RHR independent of age, gender, general and trunk adiposity. The ROC curve indicated that RHR has a high potential for screening elevated total cholesterol and triglycerides as well as dyslipidemia.Conclusion: Elevated RHR has the potential to identify subjects at an increased risk of atherosclerosis development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In pediatric populations, the use of resting heart rate as a health index remains unclear, mainly in epidemiological settings. The aims of this study were to analyze the impact of resting heart rate on screening dyslipidemia and high blood glucose and also to identify its significance in pediatric populations.Methods: The sample was composed of 971 randomly selected adolescents aged 11 to 17 years (410 boys and 561 girls). Resting heart rate was measured with oscillometric devices using two types of cuffs according to the arm circumference. Biochemical parameters triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and glucose were measured. Body fatness, sleep, smoking, alcohol consumption and cardiorespiratory fitness were analyzed.Results: Resting heart rate was positively related to higher sleep quality (β = 0.005, p = 0.039) and negatively related to cardiorespiratory fitness (β = -0.207, p = 0.001). The receiver operating characteristic curve indicated significant potential for resting heart rate in the screening of adolescents at increased values of fasting glucose (area under curve = 0.611 ± 0.039 [0.534 - 0.688]) and triglycerides (area under curve = 0.618 ± 0.044 [0.531 - 0.705]).Conclusion: High resting heart rate constitutes a significant and independent risk related to dyslipidemia and high blood glucose in pediatric populations. Sleep and cardiorespiratory fitness are two important determinants of the resting heart rate. © 2013 Fernandes et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recent studies have identified that a higher resting heart rate (RHR) is associated with elevated blood pressure, independent of body fatness, age and ethnicity. However, it is still unclear whether RHR can also be applied as a screening for other risk factors, such as hyperglycemia and dyslipidemia. Thus, the purpose of the presented study was to analyze the association between RHR, lipid profile and fasting glucose in obese children and adolescents. Methods: The sample was composed of 180 obese children and adolescents, aged between 7-16 years. Whole-body and segmental body composition were estimated by Dual-energy X-ray absorptiometry. Resting heart rate (RHR) was measured by heart rate monitors. The fasting blood samples were analyzed for serum triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose, using the colorimetric method. Results: Fasting glucose, TC, triglycerides, HDL-C, LDL-C and RHR were similar in both genders. The group of obese subjects with a higher RHR presented, at a lower age, higher triglycerides and TC. There was a significant relationship between RHR, triglycerides and TC. In the multivariate model, triglycerides and TC maintained a significant relationship with RHR independent of age, gender, general and trunk adiposity. The ROC curve indicated that RHR has a high potential for screening elevated total cholesterol and triglycerides as well as dyslipidemia. Conclusion: Elevated RHR has the potential to identify subjects at an increased risk of atherosclerosis development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (RS=0.310, p<0.01) and duration of obesity (RS=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (RS=0.277, p<0.01), with relevance for vAT (RS=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects and not only for their recognition as environmental obesogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To verify the prevalence of overweight and obesity in 7 to 10 year old schoolchildren of both sexes and high socioeconomic level. Methods: Five hundred and eleven schoolchildren (274 boys and 237 girls) were submitted to anthropometrical measurements of body mass, stature and subscapular and triceps skin-fold thickness. Body mass indexes ≥85th percentile and <95th percentile were used to determine overweight, whereas body mass indexes ≥95th percentile were adopted as indicators of obesity. The socioeconomic level was established based on information obtained from a questionnaire, considering the degree of education of the parents and the familiar consumables. Results: The total prevalence for overweight was 19.7% for the boys and 17.3% for the girls, with no significant differences amongst ages and sexes (p>0.05). On the other hand, the prevalence for obesity in the boys and girls was 17.5% and 9.3%, respectively, with significant differences between the sexes at 9 years (p<0.01) and 10 years (p<0.05) of age, as well as amongst the entire group of ages (p<0.01). Conclusion: The results indicated a high prevalence ratio for overweight (∼19%) and obesity (∼14%), much greater than the average for the 7-10 year old Brazilian population. Therefore, different from that observed in developed countries, a high socioeconomic level seems to negatively affect the prevalence for overweight and obesity, increasing the risk of the precocious development of metabolic dysfunctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is an excess of fat mass. Fat mass is an energy depot but also an endocrine organ. A deregulation of the sympathetic nervous system (SNS) might produce obesity. Stress exaggerates diet-induced obesity. After stress, SNS fibers release neuropeptide Y (NPY) which directly increases visceral fat mass producing a metabolic syndrome (MbS)-like phenotype. Adrenergic receptors are the main regulators of lipolysis. In severe obesity, we demonstrated that the adrenergic receptor subtypes are differentially expressed in different fat depots. Liver and visceral fat share a common sympathetic pathway, which might explain the low-grade inflammation which simultaneously occurs in liver and fat of the obese with MbS. The neuroendocrine melanocortinergic system and gastric ghrelin are also greatly deregulated in obesity. A specific mutation in the type 4 melanocortin receptor induces early obesity onset, hyperphagia and insulin-resistance. Nonetheless, it was recently discovered that a mutation in the prohormone convertase 1/3 simultaneously produces severe gastrointestinal dysfunctions and obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic changes in body weight have long been recognized as important indicators of risk for debilitating diseases. While weight loss or impaired growth can lead to muscle wastage, as well as to susceptibility to infections and organ dysfunctions, the development of excess fat predisposes to type 2 diabetes and cardiovascular diseases, with insulin resistance as a central feature of the disease entities of the metabolic syndrome. Although widely used as the phenotypic expression of adiposity in population and gene-search studies, body mass index (BMI), that is, weight/height(2) (H(2)), which was developed as an operational definition for classifying both obesity and malnutrition, has considerable limitations in delineating fat mass (FM) from fat-free mass (FFM), in particular at the individual level. After an examination of these limitations within the constraints of the BMI-FM% relationship, this paper reviews recent advances in concepts about health risks related to body composition phenotypes, which center upon (i) the partitioning of BMI into an FM index (FM/H(2)) and an FFM index (FFM/H(2)), (ii) the partitioning of FFM into organ mass and skeletal muscle mass, (iii) the anatomical partitioning of FM into hazardous fat and protective fat and (iv) the interplay between adipose tissue expandability and ectopic fat deposition within or around organs/tissues that constitute the lean body mass. These concepts about body composition phenotypes and health risks are reviewed in the light of race/ethnic variability in metabolic susceptibility to obesity and the metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte-neuron lactate shuttle (ANLS) and the glutamate-glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others, MS NAGM astrocytes express inflammasome components and that astrocytes are capable to release Il-1β in-vitro. Altogether, our data suggests that immune signaling of immune- and/or central nervous system origin drives alterations in astrocytic ANLS and GGC gene regulation in the MS NAGM. Such a mechanism might underlie cortical brain dysfunctions frequently encountered in MS patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lysinuric protein intolerance (LPI) is a recessively inherited disorder characterised by reduced plasma and increased urinary levels of cationic amino acids (CAAs), protein malnutrition, growth failure and hyperlipidemia. Some patients develop severe immunological, renal and pulmonary complications. All Finnish patients share the same LPIFin mutation in the SLC7A7 gene that encodes CAA transporter y+LAT1. The aim of this study was to examine molecular factors contributing to the various symptoms, systemic metabolic and lipid profiles, and innate immune responses in LPI. The transcriptomes, metabolomes and lipidomes were analysed in whole-blood cells and plasma using RNA microarrays and gas or liquid chromatography-mass spectrometry techniques, respectively. Toll-like receptor (TLR) signalling in monocyte-derived macrophages exposed to pathogens was scrutinised using qRT-PCR and the Luminex technology. Altered levels of transcripts participating in amino acid transport, immune responses, apoptosis and pathways of hepatic and renal metabolism were identified in the LPI whole-blood cells. The patients had increased non-essential amino acid, triacylglycerol and fatty acid levels, and decreased plasma levels of phosphatidylcholines and practically all essential amino acids. In addition, elevated plasma levels of eight metabolites, long-chain triacylglycerols, two chemoattractant chemokines and nitric oxide correlated with the reduced glomerular function in the patients with kidney disease. Accordingly, it can be hypothesised that the patients have increased autophagy, inflammation, oxidative stress and apoptosis, leading to hepatic steatosis, uremic toxicity and altered intestinal microbe metabolism. Furthermore, the LPI macrophages showed disruption in the TLR2/1, TLR4 and TLR9 pathways, suggesting innate immune dysfunctions with an excessive response to bacterial infections but a deficient viral DNA response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To evaluate whether menstrual irregularity in morbidly obese women is indicative of metabolic dysfunction.Patients and Methods. Fifty-seven women with morbid obesity were evaluated. They were divided into two groups: one comprising women without menstrual dysfunctions or hirsutism (Group 1), and another obese women showing menstrual dysfunction with or without hirsutism (Group 2). The following were evaluated: age, colour, childbirth, marital status, profession, socio-economic level, education, age at menarche, body weight, height, body mass index, presence of hirsutism (Ferriman Gallwey Index), abdominal circumference, hip circumference, waist-to-hip ratio, menstrual cycle, blood pressure, presence of acanthosis nigricans, insulin resistance (IR), fasting glycaemia, total cholesterol, HDL-C, LDL-C, triglycerides, thyroid-stimulating hormone, free T4, luteinising hormone (LH), follicle-stimulating hormone, prolactin, total testosterone, dehydroepiandrosterone sulfate, insulin and the Homeostasis Model Assessment (HOMA test).Results. Clinical and epidemiological aspects did not present statistical differences. Clinical and laboratory parameters did not show statistically significant alterations; however, HOMA test values for Group 2 were significantly higher than those for Group 1.Conclusions. The presence of IR in class III obese women can cause menstrual dysfunctions such as amenorrhoea or oligomenorrhoea even in the absence of hyperandrogenism, suggesting that IR plays an important role in the ovarian mechanisms involved in the menstrual cycle control.