967 resultados para MESSENGER-RNA DEGRADATION
Resumo:
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.
Resumo:
The recognition of the importance of mRNA turnover in regulating eukaryotic gene expression has mandated the development of reliable, rigorous, and "user-friendly" methods to accurately measure changes in mRNA stability in mammalian cells. Frequently, mRNA stability is studied indirectly by analyzing the steady-state level of mRNA in the cytoplasm; in this case, changes in mRNA abundance are assumed to reflect only mRNA degradation, an assumption that is not always correct. Although direct measurements of mRNA decay rate can be performed with kinetic labeling techniques and transcriptional inhibitors, these techniques often introduce significant changes in cell physiology. Furthermore, many critical mechanistic issues as to deadenylation kinetics, decay intermediates, and precursor-product relationships cannot be readily addressed by these methods. In light of these concerns, we have previously reported transcriptional pulsing methods based on the c-fos serum-inducible promoter and the tetracycline-regulated (Tet-off) promoter systems to better explain mechanisms of mRNA turnover in mammalian cells. In this chapter, we describe and discuss in detail different protocols that use these two transcriptional pulsing methods. The information described here also provides guidelines to help develop optimal protocols for studying mammalian mRNA turnover in different cell types under a wide range of physiologic conditions.
Resumo:
As an adhesion receptor, the β2 integrin lymphocyte function-associated antigen-1 (LFA-1) contributes a strong adhesive force to promote T lymphocyte recirculation and interaction with antigen-presenting cells. As a signaling molecule, LFA-1-mediates transmembrane signaling, which leads to the generation of second messengers and costimulation resulting in T cell activation. We recently have demonstrated that, in costimulatory fashion, LFA-1 activation promotes the induction of T cell membrane urokinase plasminogen activator receptor (uPAR) and that this induced uPAR is functional. To investigate the mechanism(s) of this induction, we used the RNA polymerase II inhibitor 5,6-dichloro-1-β-d-ribobenzimidazole and determined that uPAR mRNA degradation is delayed by LFA-1 activation. Cloning of the wild-type, deleted and mutated 3′-untranslated region of the uPAR cDNA into a serum-inducible rabbit β-globin cDNA reporter construct revealed that the AU-rich elements and, in particular the nonameric UUAUUUAUU sequence, are crucial cis-acting elements in uPAR mRNA degradation. Experiments in which Jurkat T cells were transfected with reporter constructs demonstrated that LFA-1 engagement was able to stabilize the unstable reporter mRNA containing the uPAR 3′-untranslated region. Our study reveals a consequence of adhesion receptor-mediated signaling in T cells, which is potentially important in the regulation of T cell activation, including production of cytokines and expression of proto-oncogenes, many of which are controlled through 3′ AU-rich elements.
Resumo:
Background: mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease. Results: We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 mu g of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c(+), CD11b(+) and CD19(+) cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7). Conclusions: Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.
Resumo:
skeletal disease. Bone remodeling is initiated by osteoclastic resorption followed by osteoblastic formation of new bone. Receptor activator of nuclear factor KB ligand (RANKL) is a newly described regulator of osteoclast formation and function, the activity of which appears to be a balance between interaction with its receptor RANK and with an antagonist binding protein osteoprotegerin (OPG). Therefore, we have examined the relationship between the expression of RANKL, RANK, and OPG and indices of bone structure and turnover in human cancellous bone from the proximal femur. Bone samples were obtained from individuals with osteoarthritis (OA) at joint replacement surgery and from autopsy controls. Histomorphometric analysis of these samples showed that eroded surface (ES/BS) and osteoid surface (OS/BS) were positively associated in both control (p < 0.001) and OA (p < 0.02), indicating that the processes of bone resorption and bone formation remain coupled in OA, as they are in controls. RANKL, OPG, and RANK messenger RNA, (mRNA) were abundant in human cancellous bone, with significant differences between control and OA individuals. In coplotting the molecular and histomorphometric data, strong associations were found between the ratio of RANKL/OPG mRNA and the indices of bone turnover (RANKL/OPG vs. ES/BS: r = 0.93, p < 0.001; RANKL/OPG vs. OS/BS: r = 0.80, p < 0.001). These relationships were not evident in trabecular bone from severe OA, suggesting that bone turnover may be regulated differently in this disease. We propose that the effective concentration of RANKL is related causally to bone turnover.
Resumo:
PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.
Resumo:
Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.
Resumo:
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Resumo:
Aquaporins (AQPs) are a family of proteins that mediate water transport across cells, but the extent to which they are involved in water transport across endothelial cells of the blood-brain barrier is not clear. Expression of AQP1 and AQP4 in rat brain microvessel endothelial cells was investigated in order to determine whether these isoforms were present and, in particular, to examine the hypothesis that brain endothelial expression of AQPs is dynamic and regulated by astrocytic influences. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry showed that AQP1 mRNA and protein are present at very low levels in primary rat brain microvessel endothelial cells, and are up-regulated in passaged cells. Upon passage, endothelial cell expression of mdr1a mRNA is decreased, indicating loss of blood-brain barrier phenotype. In passage 4 endothelial cells, AQP1 mRNA levels are reduced by coculture above rat astrocytes, demonstrating that astrocytic influences are important in maintaining the low levels of AQP1 characteristic of the blood-brain barrier endothelium. Reverse-transcriptase-PCR revealed very low levels of AQP1 mRNA present in the RBE4 rat brain microvessel endothelial cell line, with no expression detected in primary cultures of rat astrocytes or in the C6 rat glioma cell line. In contrast, AQP4 mRNA is strongly expressed in astrocytes, but no expression is found in primary or passaged brain microvessel endothelial cells, or in RBE4 or C6 cells. Our results support the concept that expression of AQP1, which is seen in many non-brain endothelia, is suppressed in the specialized endothelium of the blood-brain barrier.
Resumo:
Objective: To identify genes specifically expressed in mammalian oocytes using an in silico subtraction, and to characterize the mRNA patterns of selected genes in oocytes, embryos, and adult tissues. Design: Comparison between oocyte groups and between early embryo stages. Setting: Laboratories of embryo manipulation and molecular biology from Departamento de Genetica (FMRP) and Departamento de Ciencias Basicas (FZEA) - University of Sao Paulo. Sample(s): Oocytes were collected from slaughtered cows for measurements, in vitro fertilization, and in vitro embryo culture. Somatic tissue, excluding gonad and uterus tissue, was collected from male and female cattle. Main Outcome Measure(s): Messenger RNA levels of poly(A)-binding protein nuclear-like 1 (Pabpnl1) and methyl-CpG-binding domain protein 3-like 2 (Mbd3l2). Result(s): Pabpnl1 mRNA was found to be expressed in oocytes, and Mbd3l2 transcripts were present in embryos. Quantification of Pabpnl1 transcripts showed no difference in levels between good-and bad-quality oocytes before in vitro maturation (IVM) or between good-quality oocytes before and after IVM. However, Pabpnl1 transcripts were not detected in bad-quality oocytes after IVM. Transcripts of the Mbd3l2 gene were found in 4-cell, 8-cell, and morula-stage embryos, with the highest level observed in 8-cell embryos. Conclusion(s): Pabpnl1 gene expression is restricted to oocytes and Mbd3l2 to embryos. Different Pabpnl1 mRNA levels in oocytes of varying viability suggest an important role in fertility involving the oocyte potential for embryo development. (Fertil Steril (R) 2010; 93: 2507-12. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. The synthesis of heat shock protein 70 (Hsp70) mRNA and the expression of Hsp70 in the liver of broiler chickens submitted to acute heat stress (35 degrees C for 5 h) was investigated.2. Hsp70 expression was detected by SDS-PAGE and Western blot analysis using a polyclonal antiserum against Hsp70 of Blastocladiella emersonii. The specific signal of Hsp70 mRNA was analysed by Northern blot using as probe a Hsp70 cDNA of B. emersonii.3. An increase in the amount of Hsp70 was detected from the first up to the fifth hour of acute heat exposure. This increase in the amount of Hsp70 was accompanied by an increase in Hsp70 mRNA which peaked at 3 h.4. This study shows that the heat induced increase in Hsp70 mRNA and protein in broiler liver, in vivo, are time dependent, similar to that in mammals.
Resumo:
Tamoxifen was proven to reduce the incidence of breast cancer by 49% in women at increased risk of the disease in the Breast Cancer Prevention Trial. In order to identify potential candidates to explain the preventive effect induced by tamoxifen on breast cancer, normal breast tissue obtained from 42 fibroadenoma patients, randomly assigned to receive placebo or tamoxifen, was analyzed by the reverse Northern blot and RT-PCR techniques. The cDNA fragments used on Northern blot membranes were generated by the Human Cancer Genome Project funded by the Ludwig Institute for Cancer Research and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil). Total RNA was obtained from normal breast tissue from patients with clinical, cytological and ultrasound diagnosis of fibroadenoma. After a 50-day treatment with tamoxifen (10 or 20 mg/day) or placebo, normal breast tissue adjacent to the tumor was collected during lumpectomy with local anesthesia. One differentially expressed gene, Calcium/calmodulin-dependent protein kinase II (CaMKII), was found to be down-regulated during TAM treatment. CaMKII is an ubiquitous serine/threonine protein kinase that has been implicated in the diverse effects of hormones utilizing Ca2+ as a second messenger as well as in c-fos activation. These results indicate that the down-regulation of CaMKII induced by TAM might represent alternative or additional mechanisms of the action of this drug on cell cycle control and response to hormones in normal human breast tissue.