995 resultados para MAXIMUM-LIKELIHOOD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators. The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We apply the second-order skewness formula to a normal model with a generalized parametrization and to an ARMA model. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical q-ball imaging is widely used for reconstruction of orientation distribution function (ODF) using diffusion weighted MRI data. Estimating the spherical harmonic coefficients is a critical step in this method. Least squares (LS) is widely used for this purpose assuming the noise to be additive Gaussian. However, Rician noise is considered as a more appropriate model to describe noise in MR signal. Therefore, the current estimation techniques are valid only for high SNRs with Gaussian distribution approximating the Rician distribution. The aim of this study is to present an estimation approach considering the actual distribution of the data to provide reliable results particularly for the case of low SNR values. Maximum likelihood (ML) is investigated as a more effective estimation method. However, no closed form estimator is presented as the estimator becomes nonlinear for the noise assumption of the Rician distribution. Consequently, the results of LS estimator is used as an initial guess and the more refined answer is achieved using iterative numerical methods. According to the results, the ODFs reconstructed from low SNR data are in close agreement with ODFs reconstructed from high SNRs when Rician distribution is considered. Also, the error between the estimated and actual fiber orientations was compared using ML and LS estimator. In low SNRs, ML estimator achieves less error compared to the LS estimator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracking mobile agents with a Doppler radar system mounted on a moving vehicle is considered in this paper. Dopplers modulated from mobile agents on the single frequency continuous wave signals are analyzed in order to estimate the positions and velocities of multiple mobile agents. The measurement noise is assumed to be Gaussian and the maximum likelihood estimation is utilized to enhance the localization accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Q-ball imaging has been presented to reconstruct diffusion orientation distribution function using diffusion weighted MRI. In this thesiis, we present a novel and robust approach to satisfy the smoothness constraint required in Q-ball imaging. Moreover, we developed an improved estimator based on the actual distribution of the MR data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk, fat, and protein yields of Holstein cows from the States of New York and California in the United States were used to estimate (co)variances among yields in the first three lactations, using an animal model and a derivative-free restricted maximum likelihood (REML) algorithm, and to verify if yields in different lactations are the same trait. The data were split in 20 samples, 10 from each state, with means of 5463 and 5543 cows per sample from California and New York. Mean heritability estimates for milk, fat, and protein yields for California data were, respectively, 0.34, 0.35, and 0.40 for first; 0.31, 0.33, and 0.39 for second; and 0.28, 0.31, and 0.37 for third lactations. For New York data, estimates were 0.35, 0.40, and 0.34 for first; 0.34, 0.44, and 0.38 for second; and 0.32, 0.43, and 0.38 for third lactations. Means of estimates of genetic correlations between first and second, first and third, and second and third lactations for California data were 0.86, 0.77, and 0.96 for milk; 0.89, 0.84, and 0.97 for fat; and 0.90, 0.84, and 0.97 for protein yields. Mean estimates for New York data were 0.87, 0.81, and 0.97 for milk; 0.91, 0.86, and 0.98 for fat; and 0.88, 0.82, and 0.98 for protein yields. Environmental correlations varied from 0.30 to 0.50 and were larger between second and third lactations. Phenotypic correlations were similar for both states and varied from 0.52 to 0.66 for milk, fat and protein yields. These estimates are consistent with previous estimates obtained with animal models. Yields in different lactations are not statistically the same trait but for selection programs such yields can be modelled as the same trait because of the high genetic correlations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador: