920 resultados para MATERNAL IMMUNE ACTIVATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amygdala is a limbic structure that is involved in many of our emotions and processing of these emotions such as fear, anger and pleasure. Conditions such as anxiety, autism, and also epilepsy, have been linked to abnormal functioning of the amygdala, owing to improper neurodevelopment or damage. This thesis investigated the cellular and molecular changes in the amygdala in models of temporal lobe epilepsy (TLE) and maternal immune activation (MIA). The kainic acid (KA) model of temporal lobe epilepsy (TLE) was used to induce Ammon’s-horn sclerosis (AHS) and to investigate behavioural and cytoarchitectural changes that occur in the amygdala related to Neuropeptide Y1 receptor expression. Results showed that KA-injected animals showed increased anxiety-like behaviours and displayed histopathological hallmarks of AHS including CA1 ablation, granule cell dispersion, volume reduction and astrogliosis. Amygdalar volume and neuronal loss was observed in the ipsilateral nuclei which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsi- and contralateral granule cell layer of the dentate gyrus and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. The results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and tight regulation and appropriate control of GABA is vital for neurochemical homeostasis. GABA transporter-1 (GAT-1) is abundantly expressed by neurones and astrocytes and plays a key role in GABA reuptake and regulation. Imbalance in GABA homeostasis has been implicated in epilepsy with GAT-1 being an attractive pharmacological target. Electron microscopy was used to examine the distribution, expression and morphology of GAT-1 expressing structures in the amygdala of the TLE model. Results suggest that GAT-1 was preferentially expressed on putative axon terminals over astrocytic processes in this TLE model. Myelin integrity was examined and results suggested that in the TLE model myelinated fibres were damaged in comparison to controls. Synaptic morphology was studied and results suggested that asymmetric (excitatory) synapses occurred more frequently than symmetric (inhibitory) synapses in the TLE model in comparison to controls. This study illustrated that the amygdala undergoes ultrastructural alterations in this TLE model. Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism, schizophrenia and also epilepsy. MIA was induced at a critical window of amygdalar development at E12 using bacterial mimetic lipopolysaccharide (LPS). Results showed that MIA activates cytokine, toll-like receptor and chemokine expression in the fetal brain that is prolonged in the postnatal amygdala. Inflammation elicited by MIA may prime the fetal brain for alterations seen in the glial environment and this in turn have deleterious effects on neuronal populations as seen in the amygdala at P14. These findings may suggest that MIA induced during amygdalar development may predispose offspring to amygdalar related disorders such as heightened anxiety, fear impairment and also neurodevelopmental disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to elevated levels of maternal cytokines can lead to functional abnormalities of the dopaminergic system in the adult offspring, including enhanced amphetamine (AMPH)-induced locomotion. Therefore, it seems reasonable to consider that offspring of challenged mothers would behave differently in models of addictive behavior, such as behavioral sensitization. Thus, we sought to evaluate the effects of prenatal exposure to lipopolysaccharide (LPS) on the locomotor response to acute and chronic AMPH treatment in male mice offspring. For this purpose, LPS (Escherichia coli 0127:B8; 120 mu g/kg) was administered intraperitoneally to pregnant Swiss mice on gestational day 17. At adulthood, male offspring were studied under one of the following conditions: (1) locomotor response to acute AMPH treatment (2.5 or 5.0 mg/kg) in an open field test; (2) behavioral sensitization paradigm, which consists of a daily injection of AMPH (1.0 mg/kg) for 10 days and observation of locomotion in the open field on days 1, 5, 10 (development phase), 15 and 17 (expression phase). The LPS stimulated offspring showed enhancement of the locomotor-stimulant effect after an acute AMPH challenge in comparison to baseline and saline pre-treated mice. They also showed development of behavioral sensitization earlier than the saline pre-treated group, although no changes between saline and LPS pre-treated groups were observed on development or expression of locomotor behavioral sensitization to AMPH. Furthermore, there was up-regulation of D1 receptor protein level within striatum in the LPS-stimulated offspring which was strongly correlated with increased grooming behavior. Taken together, our results indicate that motor and dopaminergic alterations caused by maternal immune activation are restricted to the acute AMPH challenge, mostly due to up-regulation of the D1 receptor within the mesolimbic and nigrostriatal pathways, but no locomotor differences were observed for behavioral sensitization to AMPH. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Aims: Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. Methods: Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. Results and Conclusion: Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal infection during pregnancy increases the risk of several neuropsychiatric disorders later in life, many of which have a component of dopaminergic (DA) dysfunction, including schizophrenia, autism spectrum disorders (ASD), and attention deficit hyperactivity disorder (ADHD). The majority of DA neurons are found in the adult midbrain; as such the midbrain is a key region of interest regarding these disorders. The literature is conflicting regarding the behavioral alterations following maternal immune activation (MIA) exposure, and the cellular and molecular consequences of MIA on the developing midbrain remain to be fully elucidated. Thus, this thesis aimed to establish the consequences of acute and mild MIA on offspring dopamine-related behaviors, as well as the associated cellular and molecular disturbances of MIA on offspring midbrains. We utilized a rat model of MIA using low dose (50μg/kg, I.P.) of LPS administered at different gestational ages. Our first study indicated that MIA at later gestational ages significantly increased pro-inflammatory IL-1β expression, and reduced HSD11B2 expression in the placenta, which is an important regulator of fetal development. In utero LPS exposure at later gestational ages also impaired the growth of neurons from affected offspring. This study identified key gestational stages during which MIA resulted in differential effects. We utilized these time points in subsequent studies, the next of which investigated neurobehavioral outcomes following MIA. Our results from that study showed that motor differences occurred in juvenile offspring following MIA at E16 only, and these differences were compensated for in adolescence. Then, there was a decline in motor behavior capabilities in adulthood, again only for animals exposed to MIA on E16 (and not E12). Furthermore, our results also demonstrated adolescent and adult offspring that were exposed to MIA at E12 had diminished responses to amphetamine in reward seeking behaviors. In our final study, we aimed to investigate the molecular and cellular changes following MIA which might explain these behavioral alterations. This final study showed a differential inflammatory response in fetal midbrains depending on gestational age of exposure as well as differential developmental alterations. For example, LPS exposure at E16 resulted in decreased VM neurosphere size after 7DIV and this was associated with an increased susceptibility to neurotoxic effects of pro-inflammatory cytokines for VM neurospheres and VM DA neurons treated in culture. In utero LPS exposure at E16 also reduced DA neuron count of fetal VM, measured by TH staining. However, there were no differences in DA neuron number in juvenile, adolescent, or adult offspring. Similarly, LPS exposure did not alter cell number or morphology of glial cells in the midbrains of affected offspring. In conclusion, this thesis indicated later rat pregnancy (E16) as vulnerable time for MIA to affect the development of the nigrostriatal pathway and subsequent behavioral outcomes, possibly implicating a role for MIA in increased risk for disorders associated with motor behavior, like PD. These effects may be mediated through alterations in the placenta and altered inflammatory mediators in the offspring brain. This thesis has also shown that MIA in earlier rat pregnancy (E12) results in altered mesocorticolimbic function, and in particular MIA on E12 resulted in a differential response to amphetamine in affected offspring, which may implicate a role for MIA in increasing the risk for disorders associated with this pathway, including drug tolerance and addiction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problem: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. ----- ----- Method of study: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. ----- ----- Results: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. ----- ----- Conclusion: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several chronic infections known to be associated with malignancy have established oncogenic properties. However the existence of chronic inflammatory conditions that do not have an established infective cause and are associated with the development of tumours strongly suggests that the inflammatory process itself provides the prerequisite environment for the development of malignancy. This environment includes upregulation of mediators of the inflammatory response such as cyclo-oxygenase (COX)-2 leading to the production of inflammatory cytokines and prostaglandins which themselves may suppress cell mediated immune responses and promote angiogenesis. These factors may also impact on cell growth and survival signalling pathways resulting in induction of cell proliferation and inhibition of apoptosis. Furthermore, chronic inflammation may lead to the production of reactive oxygen species and metabolites such as malondialdehyde within the affected cells that may in turn induce DNA damage and mutations and, as a result, be carcinogenic. Here it is proposed that the conditions provided by a chronic inflammatory environment are so essential for the progression of the neoplastic process that therapeutic intervention aimed at inhibiting inflammation, reducing angiogenesis and stimulating cell mediated immune responses may have a major role in reducing the incidence of common cancers. © 2001 Cancer Research Campaign http://www.bjcancer.com.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis, progressive joint destruction, and disability. Reactive arthritis (ReA) is a sterile joint inflammation following a distant mucosal infection. The clinical course of these diseases is variable and cannot be predicted with reasonable accuracy by clinical and laboratory markers. The predictive value of circulating soluble interleukin-2 receptor (sIL-2R), a marker of lymphocyte activation, measured by Immulite® automated immunoassay analyzer, was evaluated in two cohorts of RA patients. In 175 patients with active early RA randomized to treatment with either on disease-modifying antirheumatic drug (DMARD) or a combination of 3 DMARDs and prednisolone, low baseline sIL-2R level predicted remission after 6 months in patients treated with a single DMARD. In 24 patients with active RA refractory to DMARDs, low baseline sIL-2R level predicted rapid clinical response to treatment with infliximab, an anti-tumour necrosis factor antibody. Furthermore, in a cohort of 26 patients with acute ReA, high baseline sIL-2R level predicted remission after 6 months. Levels of circulating soluble E-selectin (sE-selectin), a marker of endothelial activation, were measured annually by enzyme-linked immunosorbent assay (ELISA) in a cohort of 85 patients with early RA. During a five-year follow-up, sE-selectin levels were associated with activity and outcome of RA. The levels of neutrophil and monocyte CD11b/CD18 expression measured by flow cytometry, and circulating levels of sE-selectin measured by ELISA, and procalcitonin by immunoluminometric assay, were compared in 28 patients with acute ReA and 16 patients with early RA. The levels of the markers were comparable in ReA, RA, and healthy control subjects. In conlusion, sIL-2R may provide a new predictive marker in early RA treated with a single DMARD and refractory RA treated with infliximab. In addition, sIL-2R level predicts remission in acute ReA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE
To investigate changes in gene expression during aging of the retina in the mouse.

METHODS
Total RNA was extracted from the neuroretina of young (3-month-old) and old (20-month-old) mice and processed for microarray analysis. Age-related, differentially expressed genes were assessed by the empiric Bayes shrinkagemoderated t-statistics method. Statistical significance was based on dual criteria of a ratio of change in gene expression >2 and a P < 0.01. Differential expression in 11 selected genes was further verified by real-time PCR. Functional pathways involved in retinal ageing were analyzed by an online software package (DAVID-2008) in differentially expressed gene lists. Age-related changes in differential expression in the identified retinal molecular pathways were further confirmed by immunohistochemical staining of retinal flat mounts and retinal cryosections.

RESULTS
With ageing of the retina, 298 genes were upregulated and 137 genes were downregulated. Functional annotation showed that genes linked to immune responses (Ir genes) and to tissue stress/injury responses (TS/I genes) were most likely to be modified by ageing. The Ir genes affected included those regulating leukocyte activation, chemotaxis, endocytosis, complement activation, phagocytosis, and myeloid cell differentiation, most of which were upregulated, with only a few downregulated. Increased microglial and complement activation in the aging retina was further confirmed by confocal microscopy of retinal tissues. The most strongly upregulated gene was the calcitonin receptor (Calcr; >40-fold in old versus young mice).

CONCLUSIONS
The results suggest that retinal ageing is accompanied by activation of gene sets, which are involved in local inflammatory responses. A modified form of low-grade chronic inflammation (para-inflammation) characterizes these aging changes and involves mainly the innate immune system. The marked upregulation of Calcr in ageing mice most likely reflects this chronic inflammatory/stress response, since calcitonin is a known systemic biomarker of inflammation/sepsis. © Association for Research in Vision and Ophthalmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare white blood cell populations from persons with neovascular age-related macular degeneration (nAMD) with that of age-matched controls.

Methods: Immunophenotyping for white blood cell populations (including CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocytes, CD4 and CD8 T-lymphocytes, CD56 natural killer cells, CD19 B-lymphocytes and CD16+HLA-DR- neutrophils), chemokine receptor expression analysis (CX3CR1 and CCR2) as well as cell activation analysis (MHC-II, HLA-DR, CD62L, STAT3) was performed using samples of peripheral blood from nAMD patients and age- and gender-matched controls.

Results: The percentage of CD4+ T cells was significantly reduced while the percentage of CD11b+ cells and CD16+HLA-DR- neutrophils was significantly increased in nAMD patients compared to controls. The percentage of classical (CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) monocytes was similar between nAMD patients and controls, however there was a significant increase of CX3CR1 on the intermediate monocyte subset and on CD16+HLA-DR- neutrophils in nAMD compared to controls. HLA-DR was significantly increased in all monocyte subsets in nAMD compared to controls. Activation of Signal Transducer and Activator of Transcription 3 (STAT3) was significantly increased in nAMD patients compared to controls following stimulation with IL6.

Conclusions: Our results suggest an increased activation of the innate immune system in patients with nAMD. A better understanding of the role of the innate immune system in the pathogenesis of nAMD may help identify novel biomarkers and thus development of improved therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a molecular crosstalk between the trophoblast and maternal immune cells of bovine endometrium. The uterine cells are able to secrete cytokine/chemokines to either induce a suppressive environment for establishment of the pregnancy or to recruit immune cells to the endometrium to fight infections. Despite morphological differences between women and cows, mechanisms for immune tolerance during pregnancy seem to be conserved. Mechanisms for uterine immunesuppression in the cow include: reduced expression of major histocompatability proteins by the trophoblast; recruitment of macrophages to the pregnant endometrium; and modulation of immune-related genes in response to the presence of the conceptus. Recently, an eGFP transgenic cloned embryo model developed by our group showed that there is modulation of foetal proteins expressed at the site of syncytium formation, suggesting that foetal cell can regulate not only by the secretion of specific factors such as interferon-tau, but also by regulating their own protein expression to avoid excessive maternal recognition by the local immune system. Furthermore, foetal DNA can be detected in the maternal circulation; this may reflect the occurrence of an invasion of trophoblast cells and/or their fragment beyond the uterine basement membrane in the cow. In fact, the newly description of exosome release by the trophoblast cell suggests that could be a new fashion of maternal-foetal communication at the placental barrier. Additionally, recent global transcriptome studies on bovine endometrium suggested that the immune system is aware, from an immunological point of view, of the presence of the foetus in the cow during early pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a molecular crosstalk between the trophoblast and maternal immune cells of bovine endometrium. The uterine cells are able to secrete cytokine/chemokines to either induce a suppressive environment for establishment of the pregnancy or to recruit immune cells to the endometrium to fight infections. Despite morphological differences between women and cows, mechanisms for immune tolerance during pregnancy seem to be conserved. Mechanisms for uterine immunesuppression in the cow include: reduced expression of major histocompatability proteins by the trophoblast; recruitment of macrophages to the pregnant endometrium; and modulation of immune-related genes in response to the presence of the conceptus. Recently, an eGFP transgenic cloned embryo model developed by our group showed that there is modulation of foetal proteins expressed at the site of syncytium formation, suggesting that foetal cell can regulate not only by the secretion of specific factors such as interferon-tau, but also by regulating their own protein expression to avoid excessive maternal recognition by the local immune system. Furthermore, foetal DNA can be detected in the maternal circulation; this may reflect the occurrence of an invasion of trophoblast cells and/or their fragment beyond the uterine basement membrane in the cow. In fact, the newly description of exosome release by the trophoblast cell suggests that could be a new fashion of maternal-foetal communication at the placental barrier. Additionally, recent global transcriptome studies on bovine endometrium suggested that the immune system is aware, from an immunological point of view, of the presence of the foetus in the cow during early pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conflicting findings about the association between leprosy and TLR1 variants N248S and I602S have been reported. Here, we performed case-control and family based studies, followed by replication in 2 case-control populations from Brazil, involving 3162 individuals. Results indicated an association between TLR1 248S and leprosy in the case-control study (SS genotype odds ratio [OR], 1.81; P = .004) and the family based study (z = 2.02; P = .05). This association was consistently replicated in other populations (combined OR, 1.51; P < .001), corroborating the finding that 248S is a susceptibility factor for leprosy. Additionally, we demonstrated that peripheral blood mononuclear cells (PBMCs) carrying 248S produce a lower tumor necrosis factor/interleukin-10 ratio when stimulated with Mycobacterium leprae but not with lipopolysaccharide or PAM3cysK4. The same effect was observed after infection of PBMCs with the Moreau strain of bacillus Calmette-Guerin but not after infection with other strains. Finally, molecular dynamics simulations indicated that the Toll-like receptor 1 structure containing 248S amino acid is different from the structure containing 248N. Our results suggest that TLR1 248S is associated with an increased risk for leprosy, consistent with its hypoimmune regulatory function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Severe dengue virus (DENV) disease is associated with extensive immune activation, characterized by a cytokine storm. Previously, elevated lipopolysaccharide (LPS) levels in dengue were found to correlate with clinical disease severity. In the present cross-sectional study we identified markers of microbial translocation and immune activation, which are associated with severe manifestations of DENV infection. Methods: Serum samples from DENV-infected patients were collected during the outbreak in 2010 in the State of Sa˜o Paulo, Brazil. Levels of LPS, lipopolysaccharide binding protein (LBP), soluble CD14 (sCD14) and IgM and IgG endotoxin core antibodies were determined by ELISA. Thirty cytokines were quantified using a multiplex luminex system. Patients were classified according to the 2009 WHO classification and the occurrence of plasma leakage/shock and hemorrhage. Moreover, a (non-supervised) cluster analysis based on the expression of the quantified cytokines was applied to identify groups of patients with similar cytokine profiles. Markers of microbial translocation were linked to groups with similar clinical disease severity and clusters with similar cytokine profiles. Results: Cluster analysis indicated that LPS levels were significantly increased in patients with a profound pro-inflammatory cytokine profile. LBP and sCD14 showed significantly increased levels in patients with severe disease in the clinical classification and in patients with severe inflammation in the cluster analysis. With both the clinical classification and the cluster analysis, levels of IL-6, IL-8, sIL-2R, MCP-1, RANTES, HGF, G-CSF and EGF were associated with severe disease. Conclusions: The present study provides evidence that both microbial translocation and extensive immune activation occur during severe DENV infection and may play an important role in the pathogenesis.