999 resultados para MAGNETIC FABRIC
Resumo:
The Itaoca pluton consists of porphyritic monzogranite that intruded the upper crust into low-grade metasedimentary rocks of the Apiai Dornain (Ribeira Belt). Anisotropy of magnetic susceptibility and zircon U-Pb (Shrimp) geochronology were combined to determine pluton emplacement mechanisms and its chronology relative to the collision structures of the Paranapiacaba (Brasiliano II) orogenic system. Magnetic susceptibility ranges between 4 and 38 x 10(-3) SI, and thermomagnetic measurements indicate multidomain magnetite is the main carrier of anisotropy. The pluton shows an ""onion-skin"" structure roughly elongated to the northeast with its hinge zone including kilometer-wide roof-pendants. Magnetic lineations are variable in orientation in consistency with the dominant oblate symmetry of the magnetic fabric. A distinct NE-trending point-maxima, however, indicates the mean lineation is parallel to the stretching direction of the transpressive deformation that affected the regional host rocks. Prismatic zircon from the monzogranite, both in the core and in the finely-zoned margins, yielded an age of 623 +/- 10 Ma. These results suggest the magmatic fabric recorded the earlier strain increments of the regional shear deformation. It may correspond to the transition from continental arc to collision tectonics of the southern Ribeira Belt. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The weakening mechanisms involved in the collapse of complex impact craters are controversial. The Araguainha impact crater, in Brazil, exposes a complex structure of 40 km in diameter, and is an excellent object to address this issue. Its core is dominated by granite. In addition to microstructural observations, magnetic studies reveal its internal fabric acquired during the collapse phase. All granite samples exhibit impact-related planar deformation features (PDFs) and planar fractures (PFs), which were overprinted by cataclasis. Cataclastic deformation has evolved from incipient brittle fracturing to the development of discrete shear bands in the center of the structure. Fracture planes are systematically decorated by tiny grains (<10 mu m) of magnetite and hematite, and the orientation of magnetic lineation and magnetic foliation obtained by the anisotropies of magnetic susceptibility (AMS) and anhysteretic remanence (AAR) are perfectly coaxial in all studied sites. Therefore, we could track the orientation of deformation features which are decorated by iron oxides using the AMS and AAR. The magnetic fabrics show a regular pattern at the borders of the central peak, with orientations consistent with the fabric of sediments at the crater's inner collar and complex in the center of the structure. Both the cataclastic flow revealed from microstructural observations and the structural pattern of the magnetic anisotropy match the predictions from numerical models of complex impact structures. The widespread occurrence of cataclasis in the central peak, and its orientations revealed by magnetic studies indicate that acoustic fluidization likely operates at all scales, including the mineral scales. The cataclastic flow made possible by acoustic fluidization results in an apparent plastic deformation at the macroscopic scale in the core. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The combined use of grain size and magnetic fabric analyses provides the ability to discriminate among depositional environments in deep-sea terrigenous sediments. We analyzed samples from three different depositional settings: turbidites, pelagic or hemipelagic interlayers, and sediment drifts. Results indicate that sediment samples from these different environments can be distinguished from each other on the basis of their median grain size, sorting, as well as the intensity and shape of magnetic fabric as determined from an examination of the anisotropy of magnetic susceptibility. We use these discriminators to interpret downcore samples from the Bermuda Rise sediment drift. We find that the finer grains of the Bermuda Rise (relative to the Blake Outer Ridge) do not result from lower depositional energy (current speed) and so may reflect a difference in the nature of sediment being delivered to the site (i.e., distance from source) between the two locations.
Resumo:
Tese de doutoramento (co-tutela), Ciências Geofísicas e da Geoinformação (Geofísica), Université de Toulouse, Universidade de Lisboa, 2013
Resumo:
Magnetic fabric and rock magnetism studies were performed on apparently isotropic granite facies from the main intrusion of the Lavras do Sul Intrusive Complex pluton (LSIC, Rio Grande do Sul, South Brazil). This intrusion is roughly circular (similar to 12 x 13.5 km), composed of alkali-calcic and alkaline granitoids, with the latter occupying the margin of the pluton. Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the granites. Several rock-magnetism experiments performed in one specimen from each sampled site show that for all sites the magnetic susceptibility is dominantly carried by ferromagnetic minerals, while mainly magnetite carries the magnetic fabrics. Lineations and foliations in the granite facies were successful determined by applying magnetic methods. Magnetic lineations are gently plunging and roughly parallel to the boundaries of the pluton facies, except at the few sites in the central facies which have a radial orientation pattern. In contrast, the magnetic foliations tend to follow the contacts between the different granite facies. They are gently outerward-dipping inside the pluton, and become either steeply southwesterly dipping or vertical towards its margin. The lack of solid-state and subsolidus deformations at outcrop scale and in thin sections precludes deformation after full crystallization of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of processes reflecting magma flow. The foliation pattern displays a dome-shaped form for the main LSIC-pluton. However, the alkaline granites which outcrop in the southern part of the studied area have an inward-dipping foliation, and the steeply plunging magnetic lineation suggests that this area could be part of a feeder zone. The magma ascent probably occurred due to ring-diking. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Magnetic fabric and rock magnetism studies were performed on 25 unmetamorphosed mafic dikes of the Meso-Late Proterozoic (similar to 1.02 Ga) dike swarm from Salvador (Bahia State, NE Brazil). This area lies in the north-eastern part of the Sao Francisco Craton, which was dominantly formed/reworked during the Transamazonian orogeny (2.14-1.94 Ga). The dikes crop out along the beaches and in quarries around Salvador city, and cut across both amphibolite dikes and granulites. Their widths range from a few centimeters up to 30 m with an average of similar to 4 m, and show two main trends N 140-190 and N 100-120 with vertical dips. Magnetic fabrics were determined using both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The magnetic mineralogy was investigated by many experiments including remanent magnetization measurements at variable low temperatures (10-300 K), Mossbauer spectroscopy, high temperature magnetization curves (25-700 degrees C) and scanning electron microscopy (SEM). The rock magnetism study suggests pseudo-single-domain magnetite grains carrying the bulk magnetic susceptibility and AARM fabrics. The magnetite grains found in these dikes are large and we discard the presence of single-domain grains. Its composition is close to stoichiometric with low Ti substitution, and its Verwey transition occurs around 120 K. The main AMS fabric recognized in the swarm is so-called normal, in which the K(max)-K(int) plane is parallel to the dike plane and the magnetic foliation pole K(min)) is perpendicular to it. This fabric is interpreted as due to magma flow, and analysis of the K m inclination permitted to infer that approximately 80% of the dikes were fed by horizontal or sub-horizontal flows (K(max) < 30 degrees). This interpretation is supported by structural field evidence found in five dikes. In addition, based on the plunge of K(max), two mantle sources could be inferred; one of them which fed about 80% of the swarm would be located in the southern part of the region, and the other underlied the Valeria quarry. However, for all dikes the AARM tensors are not coaxial with AMS fabrics and show a magnetic lineation (AARM(max)) oriented to N30-60E, suggesting that magnetite grains were rotated clockwise from dike plane. The orientation of AARM lineation is similar to the orientation of a system of faults in which the Salvador normal fault is the most important. These faults were formed during Cretaceous rifting in the Reconcavo-Tucano-jatoba assemblage that corresponds to an aborted intra-continental rift formed during the opening of the South Atlantic. Therefore, the AARM fabric found for the Salvador dikes is probably tectonic in origin and suggests that the dike swarm was affected by the important tectonic event responsible for the break-up of the Gondwanaland. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Magnetic fabric and rock-magnetism studies were performed on the four units of the 578 +/- 3-Ma-old Piracaia pluton (NW of Sao Paulo State, southern Brazil). This intrusion is roughly elliptical (similar to 32 km(2)), composed of (i) coarse-grained monzodiorite (MZD-c), (ii) fine-grained monzodiorite (MZD-f), which is predominant in the pluton, (iii) monzonite heterogeneous (MZN-het), and (iv) quartz syenite (Qz-Sy). Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the units. Several rock-magnetism experiments performed in one specimen from each sampled units show that for all of them, the magnetic susceptibility and magnetic fabrics are carried by magnetite grains, which was also observed in the thin sections. Foliations and lineations in the units were successfully determined by applying magnetic methods. Most of the magnetic foliations are steeply dipping or vertical in all units and are roughly parallel to the foliation measured in the field and in the country rocks. In contrast, the magnetic lineations present mostly low plunges for the whole pluton. However, for eight sites, they are steep up to vertical. Thin-section analyses show that rocks from the Piracaia pluton were affected by the regional strain during and after emplacement since magmatic foliation evolves to solid-state fabric in the north of the pluton, indicating that magnetic fabrics in this area of the pluton are related to this strain. Otherwise, the lack of solid-state deformation at outcrop scale and in thin sections precludes deformation in the SW of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of magma flow, in which steeply plunging magnetic lineation suggests that a feeder zone could underlie this area.
Resumo:
This work combines structural and geochronological data to improve our understanding of the mechanical behaviour of continental crust involving large amount of magma or partially melted material in an abnormally hot collisional belt. We performed a magnetic and geochronological (U/Pb) study on a huge tonalitic batholith from the Neoproterozoic Aracual belt of East Brazil to determine the strain distribution through space and time. Anisotropy of magnetic susceptibility, combined with rock magnetism investigations, supports that the magnetic fabric is a good proxy of the structural fabric. Field measurements together with the magnetic fabrics highlight the presence in the batholith of four domains characterized by contrasted magmatic flow patterns. The western part is characterized by a gently dipping, orogen-parallel (similar to NS) magmatic foliation that bears down-dip lineations, in agreement with westward thrusting onto the Sao Francisco craton. Eastward, the magmatic foliation progressively turns sub-vertical with a lineation that flips from sub-horizontal to sub-vertical over short distances. This latter domain involves an elongated corridor in which the magmatic foliation is sub-horizontal and bears an orogen-parallel lineation. Finally the fourth, narrow domain displays sub-horizontal lineations on a sub-vertical magmatic foliation oblique (similar to N150 degrees E) to the trend of the belt. U/Pb dating of zircons from the various domains revealed homogeneity in age for all samples. This, together with the lack of solid-state deformation suggests that: 1) the whole batholith emplaced during a magmatic event at similar to 580 Ma, 2) the deformation occurred before complete solidification. and 3) the various fabrics are roughly contemporaneous. The complex structural pattern mapped in the studied tonalitic batholith suggests a 3D deformation of a slowly cooling, large magmatic body and its country rock. We suggest that the development of the observed 3D flow field was promoted by the low viscosity of the middle crust that turned gravitational force as an active tectonic force combining with the East-West convergence between the Sao Francisco and Congo cratons. (C) 2012 Elsevier Ltd. All rights reserved.
Anisotropy-magnetic susceptibility from the Krems Wachtberg archaeological Site (Austria), section 1
Anisotropy-magnetic susceptibility from the Krems Wachtberg archaeological Site (Austria), section 2
Resumo:
We have determined the azimuth of bottom-current flow in drift deposit sediments recovered at ODP Sites 1095 and 1101, Antarctic Peninsula, using paleomagnetic reorientation of anisotropy of magnetic susceptibility (AMS) ellipsoids. A total of 38 cores from the two ODP sites have been measured, providing spatial and directional information on the physical record of the ACC (Antarctic Circumpolar Current) in the Plio-Pleistocene. Declination and inclination of the paleomagnetic vector of each core segment were used to reorient the AMS principal axes to the geographic coordinates. The cores were reoriented using the measured direction of the characteristic remanent magnetization (ChRM) with respect to a common reference line for the core, from which we are able to determine the orientation of the paleocurrent flow for Sites 1095 (Drift 7) and 1101 (Drift 4) relative to the geographic coordinates. Both sites have paleocurrent directions trending ~NW-SE, which in the former locality are parallel to a sediment wave field. Our study shows that a combination of magnetic fabric analysis and paleomagnetism allows deep-sea sedimentary fabric to be used as a long-term proxy of bottom-current flow history.
Resumo:
Measurements were made of the magnetic properties of 13 sediment samples from cores spanning the entire depth of Hole 503A. The principal aim was to make a preliminary assessment of the magnetic fabric of material obtained from hydraulic piston coring (HPC) which, though considerably bioturbated, might retain substantial traces of any depositional alignment of magnetic grains. Earlier measurements on Deep Sea Drilling Project cores (Rees, 1971; Rees and Frederick, 1974; Hailwood and Sayre, 1979) suggested that the improved HPC sampling technique should, other things being equal, provide good magnetic fabric information. The Hole 503A sediments were known from shipboard measurements to possess comparatively strong stable remanence and therefore seemed likely subjects for this assessment.
Resumo:
At Site 582, DSDP Leg 87, turbidites about 560 m thick were recovered from the floor of the Nankai Trough. A turbidite bed is typically composed of three subdivisions: a lower graded sand unit, an upper massive silt unit, and an uppermost Chondrites burrowed silt unit. The turbidites intercalate with bluish gray hemipelagic mud which apparently accumulated below the calcite compensation depth. In order to investigate the nature and provenance of the turbidites, we studied the grain orientation, based on magnetic fabric measurements and thin-section grain counting, and grain size, using a photo-extinction settling tube and detrital modal analysis. The following results were obtained: (1) grain orientation analysis indicates that the turbidity current transport parallels the trench axis, predominantly from the northeast; (2) Nankai Trough turbidites generally decrease in grain size to the southwest; (3) turbidite sands include skeletal remains indicative of fresh-water and shallow-marine environments; and (4) turbidites contain abundant volcanic components, and their composition is analogous to the sediments of the Fuji River-Suruga Bay area. Considering other evidence, such as physiography and geometry of trench fill, we conclude that the turbidites of Site 582 as well as Site 583 were derived predominantly from the mouth of Fuji River and were transported through the Suruga Trough to the Nankai Trough, a distance of some 700 km. This turbidite transport system has tectonic implications: (1) the filling of the Nankai Trough is the direct consequence of the Izu collision in Pliocene- Pleistocene times; (2) the accretion of trench fill at the trench inner slope observed in the Nankai Trough is controlled by collision tectonics; and (3) each event of turbidite deposition may be related to a Tokai mega-earthquake.