928 resultados para Método experimental de esterilização
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Automotriz) UANL, 2014.
Resumo:
Incluye cuaderno de alumnos. No adjunta proyecto
Resumo:
Investigación sobre el diseño de una nueva metodología para la Física y la Química del Bachillerato para aumentar el interés del alumnado en la materia y consecuentemente facilitar su aprendizaje. Se compara el redimiento de dos muestras de estudiantes de segundo de BUP, un grupo sigue la metodología tradicional y el otro un método activo planteado como una investigación dirigida. Se utiliza una batería de test de aptitudes diferenciales DAT AR, DAT VR Y DAT NA y la prueba t de Student para comparar las dos muestras. Los resultados confirman una mejora del grupo experimental en la adquisición de las destrezas científicas, en la retención de conocimientos y en el interés del alumnado por la materia.
Resumo:
Diseñar una estrategia metodológica que, a la luz de las aportaciones científicas y de las necesidades y condicionamientos inmediatos de las escuelas, incorporase los elementos de renovación suficientes como para posibilitar el incremento del rendimiento de los alumnos de Matemáticas. Alumnos del Colegio Público Quinta Porrúa, de Santander, de los cursos sexto, séptimo y octavo de EGB. Un número de 140 niños repartidos en aulas de 30 a 40 alumnos. El diseño experimental corresponde a los denominados compensado o de control parcial. Los alumnos de cada curso son sometidos a los dos niveles de la variable independiente: método de enseñanza (tradicional versus experimental). La variable dependiente queda definida por las puntuaciones obtenidas en las pruebas de evaluación (rendimiento objetivo). Como los sujetos son los mismos en ambos tratamientos, se controla el efecto del aprendizaje no deseable administrando, en primer lugar, el método tradicional seguido del experimental. Ficha de objetivos. Ficha de control de rendimiento. Material correspondiente a la fase de adquisición de cada objetivo. Fichas de autocontrol. Ficha de integración de contenidos. Ejercicios y trabajos prácticos correspondientes a la fase de aplicación. Ficha de control. Distribuciones de frecuencia. Estadística no paramétrica: prueba de Wilcoxon y prueba de Mcnemar. Tras la aplicación del método experimental un número significativo de alumnos pasan de tener calificaciones de suspenso a calificaciones de aprobado. Por otro lado, los resultados manifiestan que el método no ha sido efectivo en la misma medida para la totalidad del alumnado. En el nivel octavo es el único donde se produce una mejora significativa globalmente, en séptimo las diferencias son significativas en el sentido contrario y en sexto no existen diferencias significativas. El método experimental es satisfactorio atendiendo a su eficacia ya que disminuye la tasa de fracaso escolar. A su vez, el método es desigual en su rendimiento según el tipo de alumnos; así, los alumnos que mayor rendimiento obtienen son los de octavo y los de capacidad baja o media.
Resumo:
Comparar los métodos educativos basados en la experimentación, los medios audiovisuales y el método tradicional. Comprobar estadísticamente si las diferencias de rendimiento y cambios de actitud ante las Ciencias Naturales son significativas y favorables a la utilización de los métodos experimentales y de medios audiovisuales frente al tradicional. Presentar la experimentación como método educativo en Ciencias Naturales a nivel de sexto de EGB. Conocer las actidudes del alumno y su adaptación a las distintas forma de didáctica de las asignaturas.. La muestra la han constituído tres grupos de alumnos de 20 sujetos cada grupo: Grupo experimental, grupo de medios audiovisuales y grupo trabajando con el método tradicional.. Variable independiente: El método de trabajo utilizado (experimental, medios audiovisuales y tradicional). Variables dependientes: El rendimiento académico del alumno; actitud del alumno ante el estudio de las Cienccias Naturales.. Instrumentos utilizados: Test de Raven, AMPE elemental, AMPE factorial, prueba objetiva elaborada para la evaluación del aprendizaje, test de Scheffe, escala de actitudes de diferenciación semántica de Osgood.. Análisis de varianza.. Trata de verificar con esta investigación la hipótesis relativa a que el uso de la experimentación y de los medios audiovisuales en la Didáctica de las Ciencias Naturales, ofrece ventajas sobre el método tradicional de trabajo en el aula, en el aprendizaje de los alumnos. Todos los grupos tienen los mismos objetivos, contenidos y disponen del mismo libro de texto. Se forman tres grupos de trabajo de 20 alumnos cada uno, comprueba que no existen diferencias significativas entre los tres grupos en el momento de iniciar la investigación. Se calculan las puntuaciones de CI y realiza el análisis de varianza respecto los grupos. Se contrastan los resultados de las puntuaciones obtenidas en las asignaturas de Lenguaje y Ciencias Naturales del curso pasado, para comprobar que no existen diferencias significativas entre los grupos, obteniendo que los grupos son homogéneos, tras aplicar el análisis de varianza. Aplica al inicio de la investigación la Escala de Actitudes de Diferenciación Semántica de Osgood, y es nuevamente aplicada tras la aplicación de los distintos métodos a los tres grupos de trabajo para medir la evolución de las actitudes de los alumnos ante la asignatura; contrastando las puntuaciones obtenidas antes y después de aplicar las diferentes metodologías. Trabaja durante tres semanas en Ciencias Naturales de sexto de EGB con distintas metodologías: En el grupo A con la Metodología Experimental, en el grupo B con la aplicación de medios audiovisuales y el grupo C,utilizado como grupo de control, sigue una metodología de trabajo tradicional. Evalúa el rendimiento alcanzado por los alumnos, respecto la aplicación de distintos métodos de trabajo, mediante una prueba común para los tres grupos, aplicada el mismo día en todos ellos. Aplica el Análisis de Varianza a los resultados obtenidos, comparando el rendimiento entre los tres grupos, descubriendo que entre los grupos A y B no existen diferencias significativas entre las medias pero sí existen diferencias significativas al comparar cualquiera de estos dos grupos con el C. Las dos variables: Rendimiento y actitud respecto a la asignatura estudiada han resultado con una clara ventaja en los grupos donde se ha aplicado el método experimental y los medios audiovisuales; siendo la diferencia de las medias de los grupos A y B sobre el C claramente significativas en ambas variables. Respecto los grupos A y B no se observan diferencias significativas. En relación con la actitud, el grupo A llevaba a la práctica las experiencias, el grupo B identificaba en la naturaleza lo que observaba en las diapositivas; despertándose la atención por la naturaleza, en cambio en el grupo C su interés disminuye. . La investigación concluye con la necesidad de introducir elementos de los métodos experimental y medios audiovisuales en el método tradicional para incrementar el rendimiento y mejorar la actitud de los alumnos ante las asignaturas. Es conveniente conjugar el método experimental y los medios audiovisuales con la seguridad de que no sólo se contribuye a capacitar y formar alumnos con un mejor rendimiento en el trabajo, además realizarán el trabajo con mayor agrado. La rsponsabilidad en el trabajo de los alumnos ante el apendizaje de la materia, disminuye la fustración y mejora el rendimiento en dicha materia, además de desarrollar una actitud más favorable hacia el estudio.
Resumo:
Avaliou-se o ganho de peso de novilhas mestiças, 1/4 Simental e 3/4 Nelore, empregando-se o método experimental de esterilização, que consiste na introdução intrauterina de esferas inoxidáveis. Foram utilizadas 100 novilhas nulíparas, destinadas ao abate, com idades entre 12 e 24 meses e com média de peso de 275kg. Todos os animais receberam o mesmo manejo alimentar, em sistema de pastejo em Brachiaria brizantha, com água e sal mineral ad libitum, e pesagens a intervalos de 28 dias, obedecido o jejum prévio de 16 horas. Os animais foram distribuídos aleatoriamente em quatro grupos (G) experimentais: G1 - composto por 25 novilhas testemunhas; G2 - por 25 novilhas esterilizadas e aplicação de um modificador orgânico; G3 - por 25 novilhas esterilizadas; e G4 - por 25 novilhas não esterilizadas e aplicação de um modificador orgânico. Foram introduzidas 12 esferas de aço inoxidável, previamente esterilizadas, no útero de cada novilha. Houve maior ganho de peso total e diário entre os animais do G2, 140,50kg e 0,578g/dia vs 108,58kg e 0,447g/dia (G1), 103,73kg e 0,427g/dia (G3), 102,68kg e 0,423g/dia (G4), respectivamente. Esta técnica pode ser recomendada aos criadores.
Resumo:
A proposta deste trabalho é apresentar uma nova metodologia para determinação experimental das capacitancias parasitas do motor de indução trifásico de rotor em gaiola. As capacitancias parasitas fazem parte do circuito equivalente do motor para estudos de interferência eletromagnética causada no motor de indução em modo comum quando ele for acionado por inversor controlado por modulação por largura de pulsos (MLP). Os procedimentos propostos para o desenvolvimento deste novo método consistem em: a) determinação dos parâmetros do circuito equivalente do motor de indução trifásico, em regime permanente, através de ensaio em laboratório; b) estabelecer configurações de ligações entre o inversor MLP e o motor para medições das grandezas de interesse que são as seguintes: tensões de modo comum e de eixo, correntes de fuga e de eixo, através de circuito de medição desenvolvido para este fim; c) calcular os valores das capacitancias parasitas entre estator e carcaça do motor; estator e rotor; rotor e carcaça e de rolamento utilizando a expressão matemática da definição de capacitancia; d) utilizar o software Pspice para simular o sistema motor de indução trifásico, alimentado por inversor MLP, com os circuitos equivalentes em baixas e altas frequências; e) obter as formas de onda características do fenômeno de modo comum.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Hoy en día, el proceso de un proyecto sostenible persigue realizar edificios de elevadas prestaciones que son, energéticamente eficientes, saludables y económicamente viables utilizando sabiamente recursos renovables para minimizar el impacto sobre el medio ambiente reduciendo, en lo posible, la demanda de energía, lo que se ha convertido, en la última década, en una prioridad. La Directiva 2002/91/CE "Eficiencia Energética de los Edificios" (y actualizaciones posteriores) ha establecido el marco regulatorio general para el cálculo de los requerimientos energéticos mínimos. Desde esa fecha, el objetivo de cumplir con las nuevas directivas y protocolos ha conducido las políticas energéticas de los distintos países en la misma dirección, centrándose en la necesidad de aumentar la eficiencia energética en los edificios, la adopción de medidas para reducir el consumo, y el fomento de la generación de energía a través de fuentes renovables. Los edificios de energía nula o casi nula (ZEB, Zero Energy Buildings ó NZEB, Net Zero Energy Buildings) deberán convertirse en un estándar de la construcción en Europa y con el fin de equilibrar el consumo de energía, además de reducirlo al mínimo, los edificios necesariamente deberán ser autoproductores de energía. Por esta razón, la envolvente del edifico y en particular las fachadas son importantes para el logro de estos objetivos y la tecnología fotovoltaica puede tener un papel preponderante en este reto. Para promover el uso de la tecnología fotovoltaica, diferentes programas de investigación internacionales fomentan y apoyan soluciones para favorecer la integración completa de éstos sistemas como elementos arquitectónicos y constructivos, los sistemas BIPV (Building Integrated Photovoltaic), sobre todo considerando el próximo futuro hacia edificios NZEB. Se ha constatado en este estudio que todavía hay una falta de información útil disponible sobre los sistemas BIPV, a pesar de que el mercado ofrece una interesante gama de soluciones, en algunos aspectos comparables a los sistemas tradicionales de construcción. Pero por el momento, la falta estandarización y de una regulación armonizada, además de la falta de información en las hojas de datos técnicos (todavía no comparables con las mismas que están disponibles para los materiales de construcción), hacen difícil evaluar adecuadamente la conveniencia y factibilidad de utilizar los componentes BIPV como parte integrante de la envolvente del edificio. Organizaciones internacionales están trabajando para establecer las normas adecuadas y procedimientos de prueba y ensayo para comprobar la seguridad, viabilidad y fiabilidad estos sistemas. Sin embargo, hoy en día, no hay reglas específicas para la evaluación y caracterización completa de un componente fotovoltaico de integración arquitectónica de acuerdo con el Reglamento Europeo de Productos de la Construcción, CPR 305/2011. Los productos BIPV, como elementos de construcción, deben cumplir con diferentes aspectos prácticos como resistencia mecánica y la estabilidad; integridad estructural; seguridad de utilización; protección contra el clima (lluvia, nieve, viento, granizo), el fuego y el ruido, aspectos que se han convertido en requisitos esenciales, en la perspectiva de obtener productos ambientalmente sostenibles, saludables, eficientes energéticamente y económicamente asequibles. Por lo tanto, el módulo / sistema BIPV se convierte en una parte multifuncional del edificio no sólo para ser física y técnicamente "integrado", además de ser una oportunidad innovadora del diseño. Las normas IEC, de uso común en Europa para certificar módulos fotovoltaicos -IEC 61215 e IEC 61646 cualificación de diseño y homologación del tipo para módulos fotovoltaicos de uso terrestre, respectivamente para módulos fotovoltaicos de silicio cristalino y de lámina delgada- atestan únicamente la potencia del módulo fotovoltaico y dan fe de su fiabilidad por un período de tiempo definido, certificando una disminución de potencia dentro de unos límites. Existe también un estándar, en parte en desarrollo, el IEC 61853 (“Ensayos de rendimiento de módulos fotovoltaicos y evaluación energética") cuyo objetivo es la búsqueda de procedimientos y metodologías de prueba apropiados para calcular el rendimiento energético de los módulos fotovoltaicos en diferentes condiciones climáticas. Sin embargo, no existen ensayos normalizados en las condiciones específicas de la instalación (p. ej. sistemas BIPV de fachada). Eso significa que es imposible conocer las efectivas prestaciones de estos sistemas y las condiciones ambientales que se generan en el interior del edificio. La potencia nominal de pico Wp, de un módulo fotovoltaico identifica la máxima potencia eléctrica que éste puede generar bajo condiciones estándares de medida (STC: irradición 1000 W/m2, 25 °C de temperatura del módulo y distribución espectral, AM 1,5) caracterizando eléctricamente el módulo PV en condiciones específicas con el fin de poder comparar los diferentes módulos y tecnologías. El vatio pico (Wp por su abreviatura en inglés) es la medida de la potencia nominal del módulo PV y no es suficiente para evaluar el comportamiento y producción del panel en términos de vatios hora en las diferentes condiciones de operación, y tampoco permite predecir con convicción la eficiencia y el comportamiento energético de un determinado módulo en condiciones ambientales y de instalación reales. Un adecuado elemento de integración arquitectónica de fachada, por ejemplo, debería tener en cuenta propiedades térmicas y de aislamiento, factores como la transparencia para permitir ganancias solares o un buen control solar si es necesario, aspectos vinculados y dependientes en gran medida de las condiciones climáticas y del nivel de confort requerido en el edificio, lo que implica una necesidad de adaptación a cada contexto específico para obtener el mejor resultado. Sin embargo, la influencia en condiciones reales de operación de las diferentes soluciones fotovoltaicas de integración, en el consumo de energía del edificio no es fácil de evaluar. Los aspectos térmicos del interior del ambiente o de iluminación, al utilizar módulos BIPV semitransparentes por ejemplo, son aún desconocidos. Como se dijo antes, la utilización de componentes de integración arquitectónica fotovoltaicos y el uso de energía renovable ya es un hecho para producir energía limpia, pero también sería importante conocer su posible contribución para mejorar el confort y la salud de los ocupantes del edificio. Aspectos como el confort, la protección o transmisión de luz natural, el aislamiento térmico, el consumo energético o la generación de energía son aspectos que suelen considerarse independientemente, mientras que todos juntos contribuyen, sin embargo, al balance energético global del edificio. Además, la necesidad de dar prioridad a una orientación determinada del edificio, para alcanzar el mayor beneficio de la producción de energía eléctrica o térmica, en el caso de sistemas activos y pasivos, respectivamente, podría hacer estos últimos incompatibles, pero no necesariamente. Se necesita un enfoque holístico que permita arquitectos e ingenieros implementar sistemas tecnológicos que trabajen en sinergia. Se ha planteado por ello un nuevo concepto: "C-BIPV, elemento fotovoltaico consciente integrado", esto significa necesariamente conocer los efectos positivos o negativos (en términos de confort y de energía) en condiciones reales de funcionamiento e instalación. Propósito de la tesis, método y resultados Los sistemas fotovoltaicos integrados en fachada son a menudo soluciones de vidrio fácilmente integrables, ya que por lo general están hechos a medida. Estos componentes BIPV semitransparentes, integrados en el cerramiento proporcionan iluminación natural y también sombra, lo que evita el sobrecalentamiento en los momentos de excesivo calor, aunque como componente estático, asimismo evitan las posibles contribuciones pasivas de ganancias solares en los meses fríos. Además, la temperatura del módulo varía considerablemente en ciertas circunstancias influenciada por la tecnología fotovoltaica instalada, la radiación solar, el sistema de montaje, la tipología de instalación, falta de ventilación, etc. Este factor, puede suponer un aumento adicional de la carga térmica en el edificio, altamente variable y difícil de cuantificar. Se necesitan, en relación con esto, más conocimientos sobre el confort ambiental interior en los edificios que utilizan tecnologías fotovoltaicas integradas, para abrir de ese modo, una nueva perspectiva de la investigación. Con este fin, se ha diseñado, proyectado y construido una instalación de pruebas al aire libre, el BIPV Env-lab "BIPV Test Laboratory", para la caracterización integral de los diferentes módulos semitransparentes BIPV. Se han definido también el método y el protocolo de ensayos de caracterización en el contexto de un edificio y en condiciones climáticas y de funcionamiento reales. Esto ha sido posible una vez evaluado el estado de la técnica y la investigación, los aspectos que influyen en la integración arquitectónica y los diferentes tipos de integración, después de haber examinado los métodos de ensayo para los componentes de construcción y fotovoltaicos, en condiciones de operación utilizadas hasta ahora. El laboratorio de pruebas experimentales, que consiste en dos habitaciones idénticas a escala real, 1:1, ha sido equipado con sensores y todos los sistemas de monitorización gracias a los cuales es posible obtener datos fiables para evaluar las prestaciones térmicas, de iluminación y el rendimiento eléctrico de los módulos fotovoltaicos. Este laboratorio permite el estudio de tres diferentes aspectos que influencian el confort y consumo de energía del edificio: el confort térmico, lumínico, y el rendimiento energético global (demanda/producción de energía) de los módulos BIPV. Conociendo el balance de energía para cada tecnología solar fotovoltaica experimentada, es posible determinar cuál funciona mejor en cada caso específico. Se ha propuesto una metodología teórica para la evaluación de estos parámetros, definidos en esta tesis como índices o indicadores que consideran cuestiones relacionados con el bienestar, la energía y el rendimiento energético global de los componentes BIPV. Esta metodología considera y tiene en cuenta las normas reglamentarias y estándares existentes para cada aspecto, relacionándolos entre sí. Diferentes módulos BIPV de doble vidrio aislante, semitransparentes, representativos de diferentes tecnologías fotovoltaicas (tecnología de silicio monocristalino, m-Si; de capa fina en silicio amorfo unión simple, a-Si y de capa fina en diseleniuro de cobre e indio, CIS) fueron seleccionados para llevar a cabo una serie de pruebas experimentales al objeto de demostrar la validez del método de caracterización propuesto. Como resultado final, se ha desarrollado y generado el Diagrama Caracterización Integral DCI, un sistema gráfico y visual para representar los resultados y gestionar la información, una herramienta operativa útil para la toma de decisiones con respecto a las instalaciones fotovoltaicas. Este diagrama muestra todos los conceptos y parámetros estudiados en relación con los demás y ofrece visualmente toda la información cualitativa y cuantitativa sobre la eficiencia energética de los componentes BIPV, por caracterizarlos de manera integral. ABSTRACT A sustainable design process today is intended to produce high-performance buildings that are energy-efficient, healthy and economically feasible, by wisely using renewable resources to minimize the impact on the environment and to reduce, as much as possible, the energy demand. In the last decade, the reduction of energy needs in buildings has become a top priority. The Directive 2002/91/EC “Energy Performance of Buildings” (and its subsequent updates) established a general regulatory framework’s methodology for calculation of minimum energy requirements. Since then, the aim of fulfilling new directives and protocols has led the energy policies in several countries in a similar direction that is, focusing on the need of increasing energy efficiency in buildings, taking measures to reduce energy consumption, and fostering the use of renewable sources. Zero Energy Buildings or Net Zero Energy Buildings will become a standard in the European building industry and in order to balance energy consumption, buildings, in addition to reduce the end-use consumption should necessarily become selfenergy producers. For this reason, the façade system plays an important role for achieving these energy and environmental goals and Photovoltaic can play a leading role in this challenge. To promote the use of photovoltaic technology in buildings, international research programs encourage and support solutions, which favors the complete integration of photovoltaic devices as an architectural element, the so-called BIPV (Building Integrated Photovoltaic), furthermore facing to next future towards net-zero energy buildings. Therefore, the BIPV module/system becomes a multifunctional building layer, not only physically and functionally “integrated” in the building, but also used as an innovative chance for the building envelope design. It has been found in this study that there is still a lack of useful information about BIPV for architects and designers even though the market is providing more and more interesting solutions, sometimes comparable to the existing traditional building systems. However at the moment, the lack of an harmonized regulation and standardization besides to the non-accuracy in the technical BIPV datasheets (not yet comparable with the same ones available for building materials), makes difficult for a designer to properly evaluate the fesibility of this BIPV components when used as a technological system of the building skin. International organizations are working to establish the most suitable standards and test procedures to check the safety, feasibility and reliability of BIPV systems. Anyway, nowadays, there are no specific rules for a complete characterization and evaluation of a BIPV component according to the European Construction Product Regulation, CPR 305/2011. BIPV products, as building components, must comply with different practical aspects such as mechanical resistance and stability; structural integrity; safety in use; protection against weather (rain, snow, wind, hail); fire and noise: aspects that have become essential requirements in the perspective of more and more environmentally sustainable, healthy, energy efficient and economically affordable products. IEC standards, commonly used in Europe to certify PV modules (IEC 61215 and IEC 61646 respectively crystalline and thin-film ‘Terrestrial PV Modules-Design Qualification and Type Approval’), attest the feasibility and reliability of PV modules for a defined period of time with a limited power decrease. There is also a standard (IEC 61853, ‘Performance Testing and Energy Rating of Terrestrial PV Modules’) still under preparation, whose aim is finding appropriate test procedures and methodologies to calculate the energy yield of PV modules under different climate conditions. Furthermore, the lack of tests in specific conditions of installation (e.g. façade BIPV devices) means that it is difficult knowing the exact effective performance of these systems and the environmental conditions in which the building will operate. The nominal PV power at Standard Test Conditions, STC (1.000 W/m2, 25 °C temperature and AM 1.5) is usually measured in indoor laboratories, and it characterizes the PV module at specific conditions in order to be able to compare different modules and technologies on a first step. The “Watt-peak” is not enough to evaluate the panel performance in terms of Watt-hours of various modules under different operating conditions, and it gives no assurance of being able to predict the energy performance of a certain module at given environmental conditions. A proper BIPV element for façade should take into account thermal and insulation properties, factors as transparency to allow solar gains if possible or a good solar control if necessary, aspects that are linked and high dependent on climate conditions and on the level of comfort to be reached. However, the influence of different façade integrated photovoltaic solutions on the building energy consumption is not easy to assess under real operating conditions. Thermal aspects, indoor temperatures or luminance level that can be expected using building integrated PV (BIPV) modules are not well known. As said before, integrated photovoltaic BIPV components and the use of renewable energy is already a standard for green energy production, but would also be important to know the possible contribution to improve the comfort and health of building occupants. Comfort, light transmission or protection, thermal insulation or thermal/electricity power production are aspects that are usually considered alone, while all together contribute to the building global energy balance. Besides, the need to prioritize a particular building envelope orientation to harvest the most benefit from the electrical or thermal energy production, in the case of active and passive systems respectively might be not compatible, but also not necessary. A holistic approach is needed to enable architects and engineers implementing technological systems working in synergy. A new concept have been suggested: “C-BIPV, conscious integrated BIPV”. BIPV systems have to be “consciously integrated” which means that it is essential to know the positive and negative effects in terms of comfort and energy under real operating conditions. Purpose of the work, method and results The façade-integrated photovoltaic systems are often glass solutions easily integrable, as they usually are custommade. These BIPV semi-transparent components integrated as a window element provides natural lighting and shade that prevents overheating at times of excessive heat, but as static component, likewise avoid the possible solar gains contributions in the cold months. In addition, the temperature of the module varies considerably in certain circumstances influenced by the PV technology installed, solar radiation, mounting system, lack of ventilation, etc. This factor may result in additional heat input in the building highly variable and difficult to quantify. In addition, further insights into the indoor environmental comfort in buildings using integrated photovoltaic technologies are needed to open up thereby, a new research perspective. This research aims to study their behaviour through a series of experiments in order to define the real influence on comfort aspects and on global energy building consumption, as well as, electrical and thermal characteristics of these devices. The final objective was to analyze a whole set of issues that influence the global energy consumption/production in a building using BIPV modules by quantifying the global energy balance and the BIPV system real performances. Other qualitative issues to be studied were comfort aspect (thermal and lighting aspects) and the electrical behaviour of different BIPV technologies for vertical integration, aspects that influence both energy consumption and electricity production. Thus, it will be possible to obtain a comprehensive global characterization of BIPV systems. A specific design of an outdoor test facility, the BIPV Env-lab “BIPV Test Laboratory”, for the integral characterization of different BIPV semi-transparent modules was developed and built. The method and test protocol for the BIPV characterization was also defined in a real building context and weather conditions. This has been possible once assessed the state of the art and research, the aspects that influence the architectural integration and the different possibilities and types of integration for PV and after having examined the test methods for building and photovoltaic components, under operation conditions heretofore used. The test laboratory that consists in two equivalent test rooms (1:1) has a monitoring system in which reliable data of thermal, daylighting and electrical performances can be obtained for the evaluation of PV modules. The experimental set-up facility (testing room) allows studying three different aspects that affect building energy consumption and comfort issues: the thermal indoor comfort, the lighting comfort and the energy performance of BIPV modules tested under real environmental conditions. Knowing the energy balance for each experimented solar technology, it is possible to determine which one performs best. A theoretical methodology has been proposed for evaluating these parameters, as defined in this thesis as indices or indicators, which regard comfort issues, energy and the overall performance of BIPV components. This methodology considers the existing regulatory standards for each aspect, relating them to one another. A set of insulated glass BIPV modules see-through and light-through, representative of different PV technologies (mono-crystalline silicon technology, mc-Si, amorphous silicon thin film single junction, a-Si and copper indium selenide thin film technology CIS) were selected for a series of experimental tests in order to demonstrate the validity of the proposed characterization method. As result, it has been developed and generated the ICD Integral Characterization Diagram, a graphic and visual system to represent the results and manage information, a useful operational tool for decision-making regarding to photovoltaic installations. This diagram shows all concepts and parameters studied in relation to each other and visually provides access to all the results obtained during the experimental phase to make available all the qualitative and quantitative information on the energy performance of the BIPV components by characterizing them in a comprehensive way.
Resumo:
Com o advento do século XX, o avanço tecnológico e o desenvolvimento nas mais diversas áreas do conhecimento acarretaram algumas mudanças na concepção do estudo da ciência. No paradigma vigente, existe na ciência política um constante comprometimento com a questão da inferência causal. O método experimental dispõe de capacidade indubitável para alegar relações de causalidade entre as variáveis de interesse. Apresenta-se, portanto, como um método pragmático para o aperfeiçoamento de teorias. Examinaremos, no presente estudo, as razões que têm suscitado o interesse crescente dos pesquisadores pela metodologia.
Resumo:
Com o advento do século XX, o avanço tecnológico e o desenvolvimento nas mais diversas áreas do conhecimento acarretaram algumas mudanças na concepção do estudo da ciência. No paradigma vigente, existe na ciência política um constante comprometimento com a questão da inferência causal. O método experimental dispõe de capacidade indubitável para alegar relações de causalidade entre as variáveis de interesse. Apresenta-se, portanto, como um método pragmático para o aperfeiçoamento de teorias. Examinaremos, no presente estudo, as razões que têm suscitado o interesse crescente dos pesquisadores pela metodologia.