941 resultados para Máquina elétrica
Resumo:
A máquina elétrica de relutância comutada (MERC) é, inerentemente, um conversor eletromecânico de velocidade variável, facilmente controlado através dos instantes de excitação e desexcitação do circuito magnético partilhado pelas fases. A sua robustez e simplicidade construtiva (só enrolamentos concentrados no estator), flexibilidade de controlo, bom rendimento numa gama alargada de velocidades, a sua fiabilidade e tolerância a defeitos fazem desta máquina uma opção válida para sistemas de conversão de energia caraterizados por baixas velocidades. A tendência crescente de instalar turbinas eólicas em offshore, para além dos desafios económicos e tecnológicos que levanta, torna a fiabilidade e a tolerância a defeitos, requisitos de vital importância. Neste contexto, a potencial aplicação da MERC a geradores eólicos sem recurso a caixa de velocidades, já que esta penaliza o custo, o volume e a fiabilidade do sistema, serviu de motivação a este trabalho. Nesta dissertação apresentam-se, numa perspetiva comparativa, diferentes paradigmas construtivos da MERC para o funcionamento gerador em regime de baixas velocidades, caraterístico dos aproveitamentos de energias renováveis. Para o efeito, formularam-se leis de escala apropriadas a análises dimensionais de topologias diferenciadas pelas caraterísticas dos circuitos elétrico e magnético e do seu posicionamento relativo. Estes modelos de escala permitiram introduzir constrangimentos físicos e dos materiais que condicionam o projeto da máquina, como a saturação magnética e limites de temperatura. Das análises dimensionais e validação com elementos finitos, elegeu-se uma estrutura magnética modular com caminhos de fluxo curtos que foi comparada com um protótipo de MERC regular, previsto para equipar um gerador eólico. Quando comparadas as duas topologias, assumindo dimensões idênticas, a modular apresentou um significativo ganho de potência específica mantendo bons níveis de rendimento. Pretende-se assim alargar a discussão do projeto das MERC, geralmente confinado a topologias regulares, a um contexto mais abrangente que inclua novos paradigmas construtivos.
Resumo:
Os motores de corrente contínua convencionais são muito bem conhecidos pela sua robustez e pelo seu alto nível de controlabilidade, alem do fato de possibilitarem a operação na região de enfraquecimento de campo (modo motor), quando esta situação se fizer necessária. Por estas características, as máquinas de corrente contínua ainda são empregadas nos dias atuais em nichos específicos de utilização. Não obstante, a máquina c.c. apresenta algumas desvantagens, principalmente a intensiva e dispendiosa manutenção eletromecânica necessária para sua operação. Como opção de sanar este problema, surgiram na década de 60, as máquinas elétricas de corrente contínua sem escovas (brushless) com excitação por ímãs permanentes de fluxo trapezoidal. O problema destas máquinas se deve justamente a impossibilidade da variação de fluxo de excitação uma vez que são produzidos puramente pelos ímãs. Sendo assim, este trabalho tem como propósito, o estudo de topologias diferenciadas da máquina elétrica, através de um circuito magnético não convencional para aplicação e utilização em sistemas de tração elétrica para operação na região de enfraquecimento de campo através da variação do fluxo resultante no entreferro. Como objeto de estudo, foi focada a topologia de fluxo axial com excitação híbrida, ou seja, dupla excitação (excitação a ímãs permanentes e excitação elétrica). Para o projeto da topologia proposta, nesta tese, adicionalmente ao método analítico, foram realizadas simulações computacionais para a comparação e refinamento dos resultados das grandezas eletromagnéticas da máquina.
Resumo:
Os veículos movidos com combustíveis fósseis são, hoje em dia, os veículos mais utilizados em transportes. Estes meios de transporte caracterizam-se pelo seu baixo rendimento e por serem poluentes, pelo que, nos últimos anos, tem havido um esforço em criar ou melhorar meios de transporte, através do aumento do seu rendimento e eliminando a emissão de poluentes. A utilização de máquinas elétricas como meio de locomoção é uma das soluções alternativas, uma vez que, estas apresentam um rendimento elevado e não emitem diretamente gases tóxicos, apesar das baterias serem uma das principais dificuldades, no que diz respeito à relação peso/densidade de energia. Por outro lado, as baterias, devido à sua capacidade de armazenamento de energia, podem ser utilizadas para armazenar energia da rede elétrica, contribuindo para uma melhor gestão, e também para armazenar num veículo elétrico a energia gerada em modo de travagem e que posteriormente pode ser utilizada para fazer mover o motor elétrico. Neste trabalho fez-se um projeto de um veículo elétrico (VE) e estudou-se o impacto da utilização em massa de veículos elétricos na gestão da rede de energia elétrica. A verificação experimental fez-se com um conversor DC/DC bidirecional com uma configuração em ponte H e com um conversor DC/DC redutor unidirecional. Utilizaram-se compensadores clássicos para, em malha fechada, regular o binário, a velocidade e a corrente, através de compensadores Proporcional Integrativo (PI) e Proporcional Integrativo Derivativo (PID). No desenvolvimento deste projeto, fez-se uma análise teórica, realizaram-se simulações na ferramenta MATLAB/Simulink onde foram criados modelos do veículo elétrico para verificar o seu comportamento, e seguidamente analisaram-se experimentalmente estes resultados. O controlo deste veículo foi feito com a utilização de microcontroladores de baixo custo, recorrendo a uma arquitetura de processamento distribuído/partilhado, constituindo esse estudo uma nova contribuição. Os resultados demonstraram que o rendimento dos veículos elétricos em média encontram-se nos 85-90 %, superior aos atuais 40% dos veículos a combustão interna, eliminando também a emissão de poluentes.
Resumo:
Esta dissertação teve como objetivo fundamental a otimização energética do sistema de refrigeração da máquina de impregnar tela ZELL e, como objetivo adicional, a avaliação da qualidade da água do circuito, justificada pela acentuada degradação dos rolos devido à corrosão provocada pela recirculação da água de arrefecimento. Inicialmente fez-se o levantamento de informações do processo produtivo para caracterizar o funcionamento do sistema de refrigeração, tendo-se selecionado duas telas de poliéster designadas neste estudo por P1 e P2 e, também, uma tela de nylon designada por N. Foram efetuados ensaios, um para cada tela, para a atual temperatura de setpoint da água à saída da torre de arrefecimento (30ºC). Realizou-se outro ensaio para a tela N mas com uma temperatura de setpoint de 37ºC, ao qual se chamou N37. Deste modo, determinou-se as potências térmicas removidas pela água de refrigeração e as potências térmicas perdidas por radiação e por convecção, tendo-se verificado que na generalidade dos rolos as referências P1 e P2 apresentam valores mais elevados. Em termos percentuais, a potência térmica removida pela água de refrigeração nos grupos tratores 1 e 3 e no conjunto de rolos de R1 a R29 corresponde a 48%, 10% e 70%, respetivamente. Com a avaliação às necessidades de arrefecimento da máquina ZELL, confirmou-se que os caudais atuais de refrigeração dos rolos garantem condições, mais que suficientes, de funcionamento dos rolamentos. Assim sendo, fez-se uma análise no sentido da diminuição do caudal total que passou de 10,25 L/s para 7,65 L/s. Considerando esta redução, determinou-se o caudal de ar húmido a ser introduzido na torre de arrefecimento. O valor determinado foi de 4,6 m3ar húmido/s, o que corresponde a uma redução de cerca de 32% em relação ao caudal atual que é de 6,8 m3ar húmido/s. Com os resultados das análises efetuadas à água do circuito de refrigeração, concluiu-se que a água de reposição e a água de recirculação possuem má qualidade para uso na generalidade dos sistemas de refrigeração, principalmente devido aos elevados valores de concentração de ferro e condutividade elétrica, responsáveis pela intensificação da corrosão no interior dos rolos.
Resumo:
Este trabalho realizou-se na empresa Continental – Indústria Têxtil do Ave, S.A (CITA) em colaboração com a empresa Cofely GDF Suez – Energia e Serviços Portugal, S.A. O principal objetivo desta dissertação foi a otimização energética da máquina de impregnar telas para pneus – a máquina ZELL, tendo em conta as principais utilidades envolvidas: eletricidade e gás natural. Deste modo foi feito um levantamento prévio das condições de operação desta máquina relativamente às telas mais representativas da produção da empresa. Tendo-se verificado que as telas em poliéster representam 65% da produção total da máquina ZELL. Para este tipo de produto, foi feita uma análise dos consumos energéticos anuais para avaliar qual das utilidades referidas corresponde à maior parcela energética. Verificou-se que o consumo de gás natural representa a maior parcela da fatura energética anual da empresa correspondendo a 47%. Além disso, da energia total consumida anualmente pela ZELL, que corresponde a 1360 tep, 32% é relativo à energia elétrica e os restantes 68% ao consumo de gás natural. Por fim, procedeu-se à otimização energética estudando as alterações possíveis no sentido de reduzir os consumos energéticos da máquina, sem prejuízo da qualidade do produto final. Para isso propôs-se a instalação de permutadores de fluxo cruzado para pré-aquecer quer o ar fresco quer o ar de combustão. A implementação desta medida tem um período de retorno à volta de três anos e pode levar a uma poupança anual entre 1.359.639 kWh e 2.370.114 kWh para o ar fresco e 393.523 kWh e 639.475 kWh para o ar de combustão.
Resumo:
This work describes the study and the implementation of the vector speed control for a three-phase Bearingless induction machine with divided winding of 4 poles and 1,1 kW using the neural rotor flux estimation. The vector speed control operates together with the radial positioning controllers and with the winding currents controllers of the stator phases. For the radial positioning, the forces controlled by the internal machine magnetic fields are used. For the radial forces optimization , a special rotor winding with independent circuits which allows a low rotational torque influence was used. The neural flux estimation applied to the vector speed controls has the objective of compensating the parameter dependences of the conventional estimators in relation to the parameter machine s variations due to the temperature increases or due to the rotor magnetic saturation. The implemented control system allows a direct comparison between the respective responses of the speed and radial positioning controllers to the machine oriented by the neural rotor flux estimator in relation to the conventional flux estimator. All the system control is executed by a program developed in the ANSI C language. The DSP resources used by the system are: the Analog/Digital channels converters, the PWM outputs and the parallel and RS-232 serial interfaces, which are responsible, respectively, by the DSP programming and the data capture through the supervisory system
Resumo:
The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column
Resumo:
The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries
Resumo:
The Support Vector Machines (SVM) has attracted increasing attention in machine learning area, particularly on classification and patterns recognition. However, in some cases it is not easy to determinate accurately the class which given pattern belongs. This thesis involves the construction of a intervalar pattern classifier using SVM in association with intervalar theory, in order to model the separation of a pattern set between distinct classes with precision, aiming to obtain an optimized separation capable to treat imprecisions contained in the initial data and generated during the computational processing. The SVM is a linear machine. In order to allow it to solve real-world problems (usually nonlinear problems), it is necessary to treat the pattern set, know as input set, transforming from nonlinear nature to linear problem. The kernel machines are responsible to do this mapping. To create the intervalar extension of SVM, both for linear and nonlinear problems, it was necessary define intervalar kernel and the Mercer s theorem (which caracterize a kernel function) to intervalar function
Resumo:
This work presents a model of bearingless induction machine with divided winding. The main goal is to obtain a machine model to use a simpler control system as used in conventional induction machine and to know its behavior. The same strategies used in conventional machines were used to reach the bearingless induction machine model, which has made possible an easier treatment of the involved parameters. The studied machine is adapted from the conventional induction machine, the stator windings were divided and all terminals had been available. This method does not need an auxiliary stator winding for the radial position control which results in a more compact machine. Another issue about this machine is the variation of inductances array also present in result of the rotor displacement. The changeable air-gap produces variation in magnetic flux and in inductances consequently. The conventional machine model can be used for the bearingless machine when the rotor is centered, but in rotor displacement condition this model is not applicable. The bearingless machine has two sets of motor-bearing, both sets with four poles. It was constructed in horizontal position and this increases difficulty in implementation. The used rotor has peculiar characteristics; it is projected according to the stator to yield the greatest torque and force possible. It is important to observe that the current unbalance generated by the position control does not modify the machine characteristics, this only occurs due the radial rotor displacement. The obtained results validate the work; the data reached by a supervisory system corresponds the foreseen results of simulation which verify the model veracity
Resumo:
One of the most important goals of bioinformatics is the ability to identify genes in uncharacterized DNA sequences on world wide database. Gene expression on prokaryotes initiates when the RNA-polymerase enzyme interacts with DNA regions called promoters. In these regions are located the main regulatory elements of the transcription process. Despite the improvement of in vitro techniques for molecular biology analysis, characterizing and identifying a great number of promoters on a genome is a complex task. Nevertheless, the main drawback is the absence of a large set of promoters to identify conserved patterns among the species. Hence, a in silico method to predict them on any species is a challenge. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. In this work, we present an empirical comparison of Machine Learning (ML) techniques such as Na¨ýve Bayes, Decision Trees, Support Vector Machines and Neural Networks, Voted Perceptron, PART, k-NN and and ensemble approaches (Bagging and Boosting) to the task of predicting Bacillus subtilis. In order to do so, we first built two data set of promoter and nonpromoter sequences for B. subtilis and a hybrid one. In order to evaluate of ML methods a cross-validation procedure is applied. Good results were obtained with methods of ML like SVM and Naïve Bayes using B. subtilis. However, we have not reached good results on hybrid database
Resumo:
Nowadays, classifying proteins in structural classes, which concerns the inference of patterns in their 3D conformation, is one of the most important open problems in Molecular Biology. The main reason for this is that the function of a protein is intrinsically related to its spatial conformation. However, such conformations are very difficult to be obtained experimentally in laboratory. Thus, this problem has drawn the attention of many researchers in Bioinformatics. Considering the great difference between the number of protein sequences already known and the number of three-dimensional structures determined experimentally, the demand of automated techniques for structural classification of proteins is very high. In this context, computational tools, especially Machine Learning (ML) techniques, have become essential to deal with this problem. In this work, ML techniques are used in the recognition of protein structural classes: Decision Trees, k-Nearest Neighbor, Naive Bayes, Support Vector Machine and Neural Networks. These methods have been chosen because they represent different paradigms of learning and have been widely used in the Bioinfornmatics literature. Aiming to obtain an improvment in the performance of these techniques (individual classifiers), homogeneous (Bagging and Boosting) and heterogeneous (Voting, Stacking and StackingC) multiclassification systems are used. Moreover, since the protein database used in this work presents the problem of imbalanced classes, artificial techniques for class balance (Undersampling Random, Tomek Links, CNN, NCL and OSS) are used to minimize such a problem. In order to evaluate the ML methods, a cross-validation procedure is applied, where the accuracy of the classifiers is measured using the mean of classification error rate, on independent test sets. These means are compared, two by two, by the hypothesis test aiming to evaluate if there is, statistically, a significant difference between them. With respect to the results obtained with the individual classifiers, Support Vector Machine presented the best accuracy. In terms of the multi-classification systems (homogeneous and heterogeneous), they showed, in general, a superior or similar performance when compared to the one achieved by the individual classifiers used - especially Boosting with Decision Tree and the StackingC with Linear Regression as meta classifier. The Voting method, despite of its simplicity, has shown to be adequate for solving the problem presented in this work. The techniques for class balance, on the other hand, have not produced a significant improvement in the global classification error. Nevertheless, the use of such techniques did improve the classification error for the minority class. In this context, the NCL technique has shown to be more appropriated
Resumo:
This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables
Resumo:
In the last decade, the renewable energy sources have present a major propulsion in the world due to several factors: political, environmental, financial and others. Within this context, we have in particular the energy obtained through wind, wind energy - that has highlighted with rapid growth in recent years, including in Brazil, mostly in the Northeast, due to it s benefit-cost between the clean energies. In this context, we propose to compare the variable structure adaptive pole placement control (VS-APPC) with a traditional control technique proportional integral controller (PI), applied to set the control of machine side in a conversion system using a wind generator based on Double-Fed Induction Generator (DFIG). Robustness and performance tests were carried out to the uncertainties of the internal parameters of the machine and variations of speed reference.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)