988 resultados para Lys49-phospholipase A(2)
Resumo:
Lys49-Phospholipase A(2) (Lys49-PLA(2)) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. With the aim of determining the structural basis for this novel activity, we have solved the crystal structure of myotoxin-II, a Lys49-PLA(2) isolated from the venom of Cerrophidion (Bothrops) godmani (godMT-II) at 2.8 Angstrom resolution by molecular replacement. The final model has been refined to a final crystallografic residual (R-factor) of 18.8% (R-free = 28.2%), with excellent stereochemistry. godMT-II is also monomeric in the crystalline state, and small-angle X-ray scattering results demonstrate that the protein is monomeric in solution under fisicochemical conditions similar to those used in the crystallographic studies. (C) 1999 Academic Press.
Resumo:
MjTX-II, a myotoxic phospholipase A(2) (PLA(2)) homologue from Bothrops moojeni venom, was functionally and structurally characterized. The MjTX-II characterization included: (i) functional characterization (antitumoral, antimicrobial and antiparasitic effects); (ii) effects of structural modifications by 4-bromophenacyl bromide (BPB), cyanogen bromide (CNBr), acetic anhydride and 2-nitrobenzenesulphonyl fluoride (NBSF); (iii) enzymatic characterization: inhibition by low molecular weight heparin and EDTA; and (iv) molecular characterization: cDNA sequence and molecular structure prediction. The results demonstrated that MjTX-II displayed antimicrobial activity by growth inhibition against Escherichia coli and Candida albicans, antitumoral activity against Erlich ascitic tumor (EAT), human breast adenocarcinoma (SK-BR-3) and human T leukemia cells (JURKAT) and antiparasitic effects against Schistosoma mansoni and Leishmania spp., which makes MjTX-II a promising molecular model for future therapeutic applications, as well as other multifunctional homologous Lys49-PLA(2)S or even derived peptides. This work provides useful insights into the structural determinants of the action of Lys49-PLA2 homologues and, together with additional strategies, supports the concept of the presence of others bioactive sites distinct from the catalytic site in snake venom myotoxic PLA(2)s. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure of dimeric Lys49-phospholipase A2 myotoxin-II from Bothrops moojeni (MjTX-II) co-crystallized with stearic acid (C18H36O2) has been determined at a resolution of 1.8 angstrom. The electron density maps permitted the unambiguous inclusion of six stearic acid molecules in the refinement. Two stearic acid molecules could be located in the substrate-binding cleft of each monomer in positions, which favor the interaction of their carboxyl groups with active site residues. The way of binding of stearic acids to this Lys49-PLA(2)s is analogous to phospholipids and transition state analogues to catalytically active PLA(2)s. Two additional stearic acid molecules were located at the dimer interface region, defining a hitherto unidentified acyl-binding site on the protein surface. The strictly conserved Lys122 for Lys49-PLA(2)s may play a fundamental role for stabilization of legend-protein complex. The comparison of MjTX-II/satiric acid complex with other Lys-PLA(2)s structures whose putative fatty acids were located at their active site is also analysed. Molecular details of the stearic acid/protein interactions provide insights to binding in croup I/II PLA(2)s and to the possible interactions of Lys49-PLA(2)s with target membranes. (c) 2004 Elsevier SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hydrolysis of phospholipids by Group II phospholipase A(2) enzymes involves a nucleophilic attack on the sn-2 ester bond by the His48 residue and stabilization of the reaction intermediate by a Ca2+ ion cofactor bound to the Asp49 residue in the protein active site region, Bothropstoxin-I (BthTX-I) is a PLA, variant present in the venom of the snake Bothrops jararacussu which shows a Asp49 to Lys substitution and which lacks hydrolytic activity yet damages artificial membranes by a noncatalytic Ca2+-independent mechanism. In order to better characterize this unusual mechanism of membrane damage, we have established an expression system for BthTX-I in Escherichia coli. The DNA-coding sequence for BthTX-I was subcloned into the vector pET11-d, and the BthTX-I was expressed as inclusion bodies in E, coli BL21(DE3). The native BthTX-I contains seven disulfide bonds, and a straightforward protocol has been developed to refold the recombinant protein at high protein concentration in the presence of surfactants using a size-exclusion chromatography matrix. After refolding, recovery yields of 2.5% (corresponding to 4-5 mg of refolded recombinant BthTX-I per liter of bacterial culture) were routinely obtained. After refolding, identical fluorescent and circular dichroism spectra were obtained for the recombinant BthTX-I compared to those of the native protein. Furthermore, the native and refolded recombinant protein demonstrated identical membrane-damaging properties as evaluated by measuring the release of an entrapped fluorescent marker from liposomes, (C) 2001 Academic Press.
Resumo:
The complete amino acid sequence of myotoxin II (godMT-II), a myotoxic phospholipase A( 2 )(PLA(2)) homologue from the venom of the Central American crotaline snake Cerrophidion (Bothrops) godmani, was determined by direct protein sequencing methods. GodMT-II is a class II PLA, showing a Lys instead of Asp at position 49. An additional substitution in the calcium binding loop region (Asn instead of Tyr at position 28) suggests the lack of enzymatic activity observed in this toxin is due to loss of its ability to bind the co-factor Ca2+, since the residues involved in forming the catalytic network of PLA(2)s (His-48, Tyr-52 and Asp-99) an conserved in godMT-II. This myotoxin shows highest sequence homology with other Lys-49 PLA(2)s from Bothrops, Agkistrodon and Trimeresurus species, suggesting that they constitute a conserved family of proteins, yet in contrast presents lower homology with Bothrops asper myotoxin III, a catalytically-active PLA(2). The C-terminal region of godMT-II, which is rich in cationic and hydrophobic residues, shares high sequence homology to the corresponding region in the myotoxin II from B. asper, which has been proposed to play an important role in the Ca2+-independent membrane damaging activity. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Lys49-Phospholipase A(2) (Lys49-PLA(2)) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity, We have solved the structure of myotoxin-I, a Lys49-PLA(2) homologue isolated from the venom of Bothrops nummifer (jumping viper) at 2.4 Angstrom resolution using molecular replacement techniques. The final model has been refined to a final R-factor of 18.4% (R-free = 23.2%), and shows excellent geometry, the myotoxin-I from Bothrops nummifer is dimeric in the crystalline state as has been observed for other Lys49-PLA(2) homologues. In addition, a continuous electron density in the active site and substrate binding channel could be successfully modeled as a fatty-acid molecule. (C) 1999 Elsevier B.V. Ltd, All rights reserved.
Resumo:
Association of class-II phospholipase A(2) (PLA(2)) with aggregated phospholipid substrate results in elevated levels of the Ca2+-dependent hydrolytic activity. The Asp49 residue participates in coordination of the Ca2+ ion cofactor, however, in Lys49-PLA(2) homologues (Lys49-PLA(2)S), substitution of the Asp49 by Lys results in loss of Ca2+ binding and lack of detectable phospholipid hydrolysis. Nevertheless, Lys49-PLA2S cause Ca2+-independent damage of liposome membranes. Bothropstoxin-I is a homodimeric Lys49-PLA(2) from the venom of Bothrops jararacussu, and in fluorescent marker release and dynamic light scattering experiments with DPPC liposomes we demonstrate activation of the Ca2+-independent membrane damaging activity by similar to4 molecules of sodium dodecyl sulphate (SDS) per protein monomer. Activation is accomparlied by significant changes in the intrinsic tryptophan fluorescence emission (ITFE) and near UV circular dichroism (UVCD) spectra of the protein. Subsequent binding of 7-10 SDS molecules results in further alterations in the ITFE and far UVCD spectra. Reduction in the rate of N-bromosuccinimide modification of Trp77 at the dimer interface suggests that initial binding of SDS to this region accompanies the activation of the membrane damaging activity. 1-anilinonaphthalene-8-sulphonic acid binding studies indicate that subsequent SDS binding to the active site is concomitant with the second structural transition. These results provide insights in the structural basis of amphiphile/protein coupling in class-II PLA(2)s. (C) 2004 Published by Elsevier B.V.
Resumo:
We have studied at a molecular level the interaction of heparins on bothropstoxin-1 (BthTx-1), a phospholipase A(2) toxin. The protein was monitored using gel filtration chromatography, dynamic light scattering (DLS), circular dichroism (CD), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. The elution profile of the protein presents a displacement of the protein peak to larger complexes when interacting with higher concentration of heparin. The DLS results shows two R-h at a molar ratio of 1, one to the distribution of the protein and the second for the action of heparin on BthTx-I structures, and a large distribution with the increase of protein. The interaction is accompanied by significant changes in the CD spectra, showing two common features: a decrease in signal at 208 nm (3 and 6 kDa heparins) and an isodichroic point near 226 nm (3 kDa heparin). FTIR spectra indicate that only a few amino acid residues are involved in this interaction. Alterations in the ITFE by binding heparins suggest that the initial binding occurs on the ventral face of BthTx-1. Together, these results add an experimental and structural basis on the action mechanism of the heparins over the phospholipases A(2) and provide a molecular model to elucidate the interaction of the enzyme-heparin complex at a molecular level. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have used near ultraviolet photoacoustic spectroscopy (PAS) over the wavelength range 240-320 nm to investigate the complex formed between the homodimeric bothropstoxin-I, a lysine-49-phospholipase A(2) from the venom of Bothrops jararacussu (BthTx-I), with the anionic amphiphile sodium dodecyl sulfate (SDS). At molar ratios > 10, the complex developed a significant light scatter, accompanied by a decrease in the intrinsic tryptophan fluorescence intensity emission (ITFE) of the protein, and an increase in the near UV-PAS signal. Difference PAS spectroscopy at SDS/BthTx-I ratios < 8 were limited to the region 280-290 nm, suggesting initial SDS binding to the tryptophan 77 located at the dimer interface. At SDS/BthTx-I ratios > 10, the intensity between 260 and 320 nm increases demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interaction. PAS signal phase changes at wavelengths specific for each aromatic residue suggest that the Trp77 becomes more buried on SDS binding, and that protein structural changes and dehydration may alter the microenvironments of Tyr and Phe residues. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scatter is significant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fernanda Canduri, Lit C. Mancuso, Andreimar M. Soares, Jose R. Giglio, Richard J. Ward and Raghuvir K. Arni. Crystallization of piratoxin I, a myotoxic Lys49-phospholipase A(2) homologue isolated from the venom of Bothrops pirajai. Toxicon 36, 547-551, 1998.-Large single crystals of piratoxin I, a Lys49-PLA(2) homologue with low enzymatic activity, have been obtained. The crystals belong to the orthorhombic system space group p2(1)2(1)2(1) and diffract X-raps to a resolution of 2.8 Angstrom. Preliminary analysis reveals the presence of two molecules in the crystallographic asymmetric unit. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Myotoxin-I (MjTX-I) was purified to homogeneity from the venom of Bothrops moojeni by ion-exchange chromatography on CM-Sepharose. Its molecular weight, estimated by SDS-PAGE, was 13,400 (reduced) or 26,000 (unreduced). The extinction coefficient (E-1.0 cm(1.0 mg/ml)) of MjTX-I was 1.145 at lambda = 278 nm, pH 7.0, and its isoelectric point was 8.2 at ionic strength mu = 0.1. When lyophilized and stored at 4 degrees C, dimeric, trimeric, and pentameric forms of the protein were identified by SDS-PAGE. This heterogeneous sample could be separated into three fractions by gel filtration on Sephadex 6-50. The fractions were analyzed by isoelectric focusing, immunoelectrophoresis, and amino acid composition, which indicated that heterogeneity was the result of different levels of self-association. Protein sequencing indicated that MjTX-I is a Lys49 myotoxin and consists of 121 amino acids (M-r = 13,669), containing a high proportion of basic and hydrophobic residues. It shares a high degree of sequence identity with other Lys49 PLA(2)-like myotoxins, but shows a significantly lower identity with catalytically active Asp49 PLA(2)s. The three-dimensional structure of MjTX-I was modeled based on the crystal structures of three highly homologous Lys49 PLA(2)-like myotoxins. This model showed that the amino acid substitutions are conservative, and mainly the beta-wing region, and the C-terminal extended random coil. MjTX-I displays local myotoxic and edema-inducing activities in mice, and is lethal by intraperitoneal injection, with an LD50 value of 8.5 +/- 0.8 mg/kg, In addition, it is cytotoxic to myoblasts/ myotubes in culture, and disrupts negatively charged liposomes. In comparison with the freshly prepared dimeric sample, the more aggregated forms showed significantly reduced myotoxic activity. However, the edema-inducing activity of MjTX-I was independent of molecular association. Phospholipase A(2) activity on egg yolk, as well as anticoagulant activity, were undetectable both in the native and in the more associated forms. His, Tyr, and Trp residues of the toxin were chemically modified by specific reagents. Although the myotoxic and lethal activities of the modified toxins were reduced by these treatments, neither its edema-inducing or Liposome-disrupting activities were significantly altered. Rabbit antibodies to native MjTX-I cross-reacted with the chemically modified forms, and both the native and modified MjTX-I preparations were recognized by antibodies against the C-terminal region 115-129 of myotoxin II from B. asper, a highly Lys49 PLA(2)-homologue with high sequencial similarity. (C) 2000 Academic Press.
Understanding the in vitro neuromuscular activity of snake venom Lys49 phospholipase A(2) homologues
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)