985 resultados para Lyapunov function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, sufficient conditions for the existence of switching laws for stabilizing switched TS fuzzy systems via a fuzzy Lyapunov function are proposed. The conditions are found by exploring properties of the membership functions and are formulated in terms of linear matrix inequalities (LMIs). Stabilizing switching conditions with bounds on the decay rate solution and H1 performance are also obtained. Numerical examples illustrate the effectiveness of the proposed design methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, the fuzzy Lyapunov function approach is considered for stabilising continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing slack LMI variables into the problem formulation. The relaxation conditions given can also be used with a class of fuzzy Lyapunov functions which also depends on the membership function first-order time-derivative. The stability results are thus extended to systems with large number of rules under membership function order relations and used to design parallel-distributed compensation (PDC) fuzzy controllers which are also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilising conditions presented. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparative study concerning the robustness of a novel, Fixed Point Transformations/Singular Value Decomposition (FPT/SVD)-based adaptive controller and the Slotine-Li (S&L) approach is given by numerical simulations using a three degree of freedom paradigm of typical Classical Mechanical systems, the cart + double pendulum. The effects of the imprecision of the available dynamical model, presence of dynamic friction at the axles of the drives, and the existence of external disturbance forces unknown and not modeled by the controller are considered. While the Slotine-Li approach tries to identify the parameters of the formally precise, available analytical model of the controlled system with the implicit assumption that the generalized forces are precisely known, the novel one makes do with a very rough, affine form and a formally more precise approximate model of that system, and uses temporal observations of its desired vs. realized responses. Furthermore, it does not assume the lack of unknown perturbations caused either by internal friction and/or external disturbances. Its another advantage is that it needs the execution of the SVD as a relatively time-consuming operation on a grid of a rough system-model only one time, before the commencement of the control cycle within which it works only with simple computations. The simulation examples exemplify the superiority of the FPT/SVD-based control that otherwise has the deficiency that it can get out of the region of its convergence. Therefore its design and use needs preliminary simulation investigations. However, the simulations also exemplify that its convergence can be guaranteed for various practical purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the problem of stabilizing a class of structures subject to an uncertain excitation due to the temporary coupling of the main system with another uncertain dynamical subsystem. A Lyapunov function based control scheme is proposed to attenuate the structural vibration. In the control design, the actuator dynamics is taken into account. The control scheme is implemented by using only feedback information of the main system. The effectiveness of the control scheme is shown for a bridge platform with crossing vehicle

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we introduce the concept of a gradient-like nonlinear semigroup as an intermediate concept between a gradient nonlinear semigroup (those possessing a Lyapunov function, see [J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25, Amer. Math. Soc., 1989]) and a nonlinear semigroup possessing a gradient-like attractor. We prove that a perturbation of a gradient-like nonlinear semigroup remains a gradient-like nonlinear semigroup. Moreover, for non-autonomous dynamical systems we introduce the concept of a gradient-like evolution process and prove that a non-autonomous perturbation of a gradient-like nonlinear semigroup is a gradient-like evolution process. For gradient-like nonlinear semigroups and evolution processes, we prove continuity, characterization and (pullback and forwards) exponential attraction of their attractors under perturbation extending the results of [A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suarez, Characterization of non-autonomous attractors of a perturbed gradient system, J. Differential Equations 236 (2007) 570-603] on characterization and of [A.V. Babin, M.I. Vishik, Attractors in Evolutionary Equations, Stud. Math. Appl.. vol. 25, North-Holland, Amsterdam, 1992] on exponential attraction. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a semidynamical system subject to variable impulses and we obtain the LaSalle invariance principle and the asymptotic stability theorem for this semidynamical system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the scalar delayed differential equation epsilon(x) over dot(t) = -x(t) + f(x(t-1)), where epsilon > 0 and f verifies either df/dx > 0 or df/dx < 0 and some other conditions. We present theorems indicating that a generic initial condition with sign changes generates a solution with a transient time of order exp(c/epsilon), for some c > 0. We call it a metastable solution. During this transient a finite time span of the solution looks like that of a periodic function. It is remarkable that if df/dx > 0 then f must be odd or present some other very special symmetry in order to support metastable solutions, while this condition is absent in the case df/dx < 0. Explicit epsilon-asymptotics for the motion of zeroes of a solution and for the transient time regime are presented.