75 resultados para Lumbosacral
Resumo:
Methods: Six adult mixed breed dogs (two males and four females) weighing 7 to 14 kg (10 center dot 5 +/- 1 center dot 5 kg) and aged two to five years were used. Each dog received both treatments in random order: levobupivacaine alone (LBA; n=6) or levobupivacaine plus hyaluronidase (LBH; n=6) administered in the lumbosacral epidural space. Systemic effects, spread and duration of anaesthesia and motor block were determined before treatment and at predetermined intervals. Results: The duration of local anaesthesia was 90 +/- 10 minutes (P=0 center dot 001) for LBH treatment and 150 +/- 15 minutes for LBA treatment. In the LBH treatment, anaesthesia reached the T12 to T13 dermatome and in the LBA treatment it reached the T11 to T12 dermatome in all animals in 5 and 15 minutes, respectively. Complete motor blockade was 75 +/- 12 minutes (P=0 center dot 01) and 120 +/- 15 minutes for LBH and LBA treatments, respectively. Clinical Significance: Hyaluronidase added to levobupivacaine significantly shortens the duration of epidural anaesthesia with the same dermatome spread into the epidural space in dogs.
Resumo:
BACKGROUND AND PURPOSE: The high variability of CSF volumes partly explains the inconsistency of anesthetic effects, but may also be due to image analysis itself. In this study, criteria for threshold selection are anatomically defined. METHODS: T2 MR images (n = 7 cases) were analyzed using 3-dimentional software. Maximal-minimal thresholds were selected in standardized blocks of 50 slices of the dural sac ending caudally at the L5-S1 intervertebral space (caudal blocks) and middle L3 (rostral blocks). Maximal CSF thresholds: threshold value was increased until at least one voxel in a CSF area appeared unlabeled and decreased until that voxel was labeled again: this final threshold was selected. Minimal root thresholds: thresholds values that selected cauda equina root area but not adjacent gray voxels in the CSF-root interface were chosen. RESULTS: Significant differences were found between caudal and rostral thresholds. No significant differences were found between expert and nonexpert observers. Average max/min thresholds were around 1.30 but max/min CSF volumes were around 1.15. Great interindividual CSF volume variability was detected (max/min volumes 1.6-2.7). CONCLUSIONS: The estimation of a close range of CSF volumes which probably contains the real CSF volume value can be standardized and calculated prior to certain intrathecal procedures
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) affects various components and segments of the peripheral nervous system differently, and thus there can be phenotypic heterogeneity. We report a 47-year-old woman with chronic sensory disturbances and proximal weakness limited to the legs. Motor and sensory nerve conduction studies were normal. Somatosensory evoked potentials and imaging indicated a demyelinating process involving the lumbosacral roots. The patient responded favorably to IVIg. Although she did not fulfill the diagnostic criteria for CIDP we believe this patient represents a restricted regional CIDP variant.
Resumo:
OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.
Resumo:
OBJECTIVE: To determine stiffness and load-displacement curves as a biomechanical response to applied torsion and shear forces in cadaveric canine lumbar and lumbosacral specimens. STUDY DESIGN: Biomechanical study. ANIMALS: Caudal lumbar and lumbosacral functional spine units (FSU) of nonchondrodystrophic large-breed dogs (n=31) with radiographically normal spines. METHODS: FSU from dogs without musculoskeletal disease were tested in torsion in a custom-built spine loading simulator with 6 degrees of freedom, which uses orthogonally mounted electric motors to apply pure axial rotation. For shear tests, specimens were mounted to a custom-made shear-testing device, driven by a servo hydraulic testing machine. Load-displacement curves were recorded for torsion and shear. RESULTS: Left and right torsion stiffness was not different within each FSU level; however, torsional stiffness of L7-S1 was significantly smaller compared with lumbar FSU (L4-5-L6-7). Ventral/dorsal stiffness was significantly different from lateral stiffness within an individual FSU level for L5-6, L6-7, and L7-S1 but not for L4-5. When the data from 4 tested shear directions from the same specimen were pooled, level L5-6 was significantly stiffer than L7-S1. CONCLUSIONS: Increased range of motion of the lumbosacral joint is reflected by an overall decreased shear and rotational stiffness at the lumbosacral FSU. CLINICAL RELEVANCE: Data from dogs with disc degeneration have to be collected, analyzed, and compared with results from our chondrodystrophic large-breed dogs with radiographically normal spines.
Resumo:
AIMS To determine efficacy of a minimally invasive (MI) surgical approach using a human MI lumbar retractor for canine lumbosacral dorsal laminectomy and partial discectomy and to compare this technique to the standard open surgical (OS) approach. METHODS Lumbosacral dorsal laminectomy and partial discectomy was performed on 16 large-breed canine cadavers using either a standard OS (n=8) or MI (n=8) approach. Skin and fascial incision length, procedure time, and intraoperative complications were recorded. Postoperatively specimens were evaluated for laminectomy and discectomy dimensions, and visible damage to the cauda equina and exiting nerve roots. RESULTS Median length of skin and fascial incisions in the OS group were longer than in the MI group (p<0.001). Median laminectomy length was similar between both approaches (p=0.234) but width was greater for the MI than OS approach (p=0.002). Both approaches achieved similar partial discectomy width (p=0.279). Overall surgical time was longer for MI approaches compared to OS, with a median of 18.5 (min 15.5, max 21.8) minutes for MI compared to 14.6 (min 13.1, max 16.9) minutes for OS (p=0.001). CONCLUSIONS The MI approach reduced incision lengths while retaining comparable laminectomy and discectomy dimensions. For this in vitro model the MI approach required more time to complete, but this difference may not be relevant in clinical cases. CLINICAL RELEVANCE Dogs undergoing lumbosacral dorsal laminectomy are commonly large-breed dogs. The traditional open approach requires a large skin incision and soft tissue dissection, especially in overweight animals. A MI approach accomplishing the same surgical result while minimising soft tissue trauma could reduce post-operative pain and recovery time, and may lower wound-related complications. Clinical studies are needed to confirm postoperative benefit and assess operating times in vivo.
Resumo:
Patients with low back pain (LBP) often present with impaired proprioception of the lumbopelvic region. For this reason, proprioception training usually forms part of the rehabilitation protocols. New exercise equipment that produces whole body, low frequency vibration (WBV) has been developed to improve muscle function, and reportedly improves proprioception. The aim of this pilot study was to investigate whether weightbearing exercise given in conjunction with WBV would affect lumbosacral position sense in healthy individuals. For this purpose, twenty-five young individuals with no LBP were assigned randomly to an experimental or control group. The experimental group received WBV for five minutes while holding a static, semi-squat position. The control group adopted the same weightbearing position for equal time but received no vibration. A two-dimensional motion analysis system measured the repositioning accuracy of pelvic tilting in standing. The experimental (WBV) group demonstrated a significant improvement in repositioning accuracy over time (mean 0.78 degrees) representing 39% improvement. It was concluded that WBV may induce improvements in lumbosacral repositioning accuracy when combined with a weightbearing exercise. Future studies with WBV should focus on evaluating its effects with different types of exercise, the exercise time needed for optimal outcomes, and the effects on proprioception deficits in LBP patients.
Resumo:
Study Design. In vitro biomechanical investigation of the screw-holding capacity. Objective. To evaluate the effect of repetitive screw-hole use on the insertional torque and retentive strength of vertebral system screws. Summary and Background Data. Placement and removal of vertebral system screws is sometimes necessary during the surgical procedures in order to assess the walls of the pilot hole. This procedure may compromise the holding capacity of the implant. Methods. Screws with outer diameter measuring 5, 6, and 7 mm were inserted into wood, polyurethane, polyethylene, and cancellous bone cylindrical blocks. The pilot holes were made with drills of a smaller, equal, or wider diameter than the inner screw diameter. Three experimental groups were established based on the number of insertions and reinsertions of the screws and subgroups were created according to the outer diameter of the screw and the diameter of the pilot hole used. Results. A reduction of screw-holding capacity was observed between the first and the following insertions regardless the anchorage material. The pattern of reduction of retentive strength was not similar to the pattern of torque reduction. The pullout strength was more pronounced between the first and the last insertions, while the torque decreased more proportionally from the first to the last insertions. Conclusion. Insertion and reinsertion of the screws of the vertebral fixation system used in the present study reduced the insertion torque and screw purchase.