879 resultados para Low protein consumption
Resumo:
A protocol of physical exercise, based on maximal oxygen uptake ((V) over dot(O2max)), for female rats before and during pregnancy was developed to evaluate the impact of a low-protein diet on oxygen consumption during gestation and growth rate of the offspring. Virgin female Wistar rats were divided into four groups as follows: untrained (NT, n = 5); trained (T, n = 5); untrained with low-protein diet (NT+LP, n = 5); and trained with low-protein diet (T+LP, n = 5). Trained rats were submitted to a protocol of moderate physical training on a treadmill over a period of 4 weeks (5 days week(-1) and 60 min day(-1), at 65% of (V) over dot(O2max)). At confirmation of pregnancy, the intensity and duration of the exercise was reduced. Low-protein groups received an 8% casein diet, and their peers received a 17% casein diet. The birthweight and growth rate of the pups up to the 90th day were recorded. Oxygen consumption ((V) over dot(O2)), CO(2) production and respiratory exchange ratio (RER) were determined using an indirect open-circuit calorimeter. Exercise training increased. (V) over dot(O2max) by about 20% when compared with the initial values (45.6 +/- 1.0 ml kg(-1) min(-1)). During gestation, all groups showed a progressive reduction in the resting (V) over dot(O2) values. Dams in the NT+LP group showed lower values of resting (V) over dot(O2) than those in the NT group. The growth rate of pups from low-protein-fed mothers was around 50% lower than that of their respective controls. The T group showed an increase in body weight from the 60th day onwards, while the NT+LP group presented a reduced body weight from weaning onwards. In conclusion, physical training attenuated the impact of the low- protein
Resumo:
Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P < 0.05), which can be involved in the 2-fold increased (P < 0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption. © 2005 Elsevier Inc. All rights reserved.
Resumo:
In this paper, micro gas sensor was fabricated using indium oxide nanowire for effective gas detection and monitoring system. Indium oxide nanowire was grown using thermal CVD, and their structural properties were examined by the SEM, XRD and TEM. The electric properties for microdropped indium oxide nanowire device were measured, and gas response characteristics were examined for CO gas. Sensors showed high sensitivity and stability for CO gas. And with below 20 mw power consumption, 5 ppm CO could be detected.
Resumo:
The noble gas sensor using multiple ZnO nanorods was fabricated with CMOS compatible process and sol-gel growth method on selective area and gas response characteristics to NO2 gas of the sensor device were investigated. We confirmed the sensors had high sensitive response denoted by the sensitivity of several tens for NO2 gas sensing and also showed pretty low power consumption close to 20 mW even though the recovery of resistance come up to almost the initial value.
Resumo:
A thermo-optic Mach-Zehnder (MZ) variable optical attenuator based on silicon waveguides with a large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. Multimode interferometers were used as power splitters and combiners in the MZ structure. In order to achieve a smooth interface, anisotropic chemical etching of silicon was used to fabricate the waveguides. Isolating grooves were introduced to reduce power consumption and device length. The device has a low power consumption of 210 mW and a response time of 50 mus. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.
Resumo:
A low power consumption 2 x 2 thermo-optic switch with fast response was fabricated on silicon-on-insulator by anisotropy chemical etching. Blocking trenches were etched on both sides of the phase-shifting arms to shorten device length and reduce power consumption. Thin top cladding layer was grown to reduce power consumption and switching time. The device showed good characteristics, including a low switching power of 145 mW and a fast switching speed of 8 +/- 1 mus, respectively. Two-dimensional finite element method was applied to simulate temperature field in the phase-shifting arm instead of conventional one-dimensional method. According to the simulated result, a new two-dimensional index distribution of phase-shifting arm was determined. Consequently finite-difference beam propagation method was employed to simulate the light propagation in the switch, and calculate the power consumption as well as the switching speed. The experimental results were in good agreement with the theoretical estimations. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A SOI thenno-optic variable optical attenuator with U-grooves based on a multimode interference coupler principle is fabricated. The dynamic attenuation range is 0 to 29 dB; at the wavelength range between 1510 nm and 1610nm, and the maximum power consumption is only l30mW. Compared to the variable optical attenuator without U-groove, the maximum power consumption decreases more than 230mW
Resumo:
In this paper, the fabrication method of a new type of carbon monoxide gas sensor based on SnOx with low power consumption and its sensing characteristics have been reported. The electric conductance of this type of sensor evolves oscillation form regularly when the sensor is exposed to low level of CO gas. The oscillation amplitude is directly proportional to the concentration of CO gas over a wide range. The effects of relevant factors. such as. humidity, temperature and interference gases on the sensor properties were examined. The sensing oscillation response mechanism was also discussed.
Resumo:
Low-protein content natural rubber latex was produced by using a nonionic surfactant-polyethylene glycol (PEG). Extractable protein content of natural rubber latex was found to decrease with PEG treatment and reduction increased with increase in the molecular weight of PEG. The low-protein latex samples were characterized by tensile testing, Fourier transform infrared and thermogravimetric analysis. The results have shown 35% reduction in the extractable protein content, without any compromise on the mechanical properties of the latex; however, thermal stability of low-protein latex was found to be reduced marginally with PEG treatment.
Resumo:
Latex protein allergy is a serious problem faced by users of natural rubber latex products. This is severe in health care workers, who are constantly using latex products like examination gloves, surgical gloves etc. Out of the total proteins only a small fraction is extractable and only these proteins cause allergic reactions in sensitized people. Enzymic deproteinisation of latex and leaching and chlorination of latex products are the common methods used to reduce the severity of the problem.Enzyme deproteinisation is a cubersome process involving high cost and process loss.Physical properties of such films are poor. Leaching is a lengthy process and in leached latex products presence of extractable proteins is observed on further storing. Chlorination causes yellowing of latex products and reduction in tensile properties.In this context a more simple process of removal of extractable proteins from latex itself was investigated. This thesis reports the application of poly propylene glycol (PPG) to displace extractable proteins from natural latex. PPG is added to 60 % centrifuged natural latex to the extent of 0.2 % m/rn, subssequently diluted to 30 % dry rubber content and again concentrated to obtain a low protein latex.Dilution of concentrated latex and subsequent concentration lead to a total reduction in non - rubber solids in the concentrate, especially proteins and reduction in the ionic concentration in the aqueous phase of the latex. It has been reported that proteins in natural rubber / latex affect its behaviour in the vulcanisation process. Ionic concentration in the aqueous phase of latex influence the stability, viscosity and flow behaviour of natural latex. Hence, a detailed technological evaluation was carried out on this low protein latex. In this study, low protein latex was compared with single centrifuged latex ( the raw material to almost every latex product), double centrifuged latex ( because dilution and second concentration of latex is accompanied by protein removal to some extent and reduction in the ionic concentration of the aqueous phase of latex.). Studies were conducted on Sulphur cure in conventional and EV systems under conditions of post ~ cure and prevulcanisation of latex. Studies were conducted on radiation cure in latex stage. Extractable protein content in vulcanised low protein latex films are observed to be very low. lt is observed that this low protein latex is some what slower curing than single centrifuged latex, but faster than double centrifuged latex. Modulus of low protein latex films were slightly low. In general physical properties of vulcanised low protein latex films are only siightly lower than single centrifuged latex. Ageing properties of the low protein latex films were satisfactory. Viscosity and flow behaviour of low protein latex is much better than double centrifuged latex and almost comparable to single centrifuged latex. On observing that the physical properties and flow behaviour of low protein latex was satisfactory, it was used for the preparation of examination gloves and the gloves were evaluated. It is observed that the properties are conforming to the Indian Standard Specifications. It is thus observed that PPG treatment of natural latex is a simple process of preparing low protein latex. Extractable protein content in these films are very low.The physical properties of the films are comparable to ordinary centrifuged latex and better than conventionally deprotenized latex films. This latex can be used for the production of examination gloves.
Resumo:
Nutrition for broilers under high temperatures is extremely important for brazilian broiler chicken industry because the amounts of consumed nutrients and environmental temperature have great effects on bird performance and carcass quality. Among diet nutrients, protein has the highest heat increment; thus, during many years, diets with low protein level were recommended in order to reduce heat production in broiler chickens under heat stress. However, reports have shown that low-protein diets have negative effects on broiler performance when environmental temperature is high, because during heat stress, low food intake associated to a low diet protein induce amino acid deficiencies. Other studies have shown that broilers fed low-protein diets increase their energy requirement for maintenance with higher heat production. Thus, with the growth of broiler industry in tropical areas more challenges need to be faced by the farmers. So, both the ambient and nutritional conditions ought to be well managed to avoid negative effects on poultry production once they can affect the metabolism (body heat production under low temperature and body heat dissipation under high temperature) with consequence on poultry performance (meat and eggs).