945 resultados para Low molecular weight
Resumo:
This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.
Resumo:
Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.
Resumo:
Phosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influences the phosphorylation of signaling pathway mediators involved in cancer and is thus postulated to be a tumor-promoting enzyme, but neither unequivocal clinical evidence nor convincing mechanistic actions for a role of LMWPTP have been identified. In the present study, we show that LMWPTP expression is not only significantly increased in colorectal cancer (CRC), but also follows a step-wise increase in different levels of dysplasia. Chemical inhibition of LMWPTP significantly reduces CRC growth. Furthermore, downregulation of LMWPTP in CRC leads to a reduced migration ability in both 2D- and 3D-migration assays, and sensitizes tumor cells to the chemotherapeutic agent 5-FU. In conclusion, this study shows that LMWPTP is not only overexpressed in colorectal cancer, but it is correlated with the malignant potential of this cancer, suggesting that this phosphatase may act as a predictive biomaker of CRC stage and represents a rational novel target in the treatment of this disease.
Resumo:
Isosorbide succinate moieties were incorporated into poly(L-lactide) (PLLA) backbone in order to obtain a new class of biodegradable polymer with enhanced properties. This paper describes the synthesis and characterization of four types of low molecular weight copolymers. Copolymer I was obtained from monomer mixtures of L-lactide, isosorbide, and succinic anhydride; II from oligo(L-lactide) (PLLA), isosorbide, and succinic anhydride; III from oligo(isosorbide succinate) (PIS) and L-lactide; and IV from transesterification reactions between PLLA and PIS. MALDI-TOFMS and 13C-NMR analyses gave evidence that co-oligomerization was successfully attained in all cases. The data suggested that the product I is a random co-oligomer and the products II-IV are block co-oligomers.
Resumo:
Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low-molecular-weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition-state analogues based on adenosine or other 6-amino nucleosides should not be discounted as potential starting points for alternative inhibitors.
Resumo:
The aims of this work were preparation and physical-chemical characterization of a microparticulate release system for delivery of enoxaparin sodium (ENX), a low-molecular-weight heparin, as a potential vehicle for optimization of deep venous thrombosis therapy. Microparticles (MPs) containing ENX were prepared from polylactide-co-glycolic acid [PLGA; (50: 50)] by a double emulsification/solvent evaporation method. The preparation parameters, such as proportion ENX/PLGA, surfactant concentration, type, time, and speed of stirring, were evaluated. The encapsulation efficiency and yield process were determined and optimized, and the in vitro release profile was analysed at 35 days. The MPs showed a spherical shape with smooth and regular surfaces. The size distribution showed a unimodal profile with an average size of 2.0 +/- 0.9 mu m. The low encapsulation efficiency (< 30%), characteristic of hydrophilic macromolecules was improved, reaching 50.2% with a procedure yield of 71.3%. The in vitro profile of ENX release from the MPs was evaluated and showed pseudo-zero-order kinetics. This indicated that diffusion was the main drug release mechanism. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:1783-1792, 2011
Resumo:
Activation of the human complement system of plasma proteins during immunological host defense can result in overproduction of potent proinflammatory peptides such as the anaphylatoxin C5a. Excessive levels of C5a are associated with numerous immunoinflammatory diseases, but there is as yet no clinically available antagonist to regulate the effects of C5a. We now describe a series of small molecules derived from the C-terminus of C5a, some of which are the most potent low-molecular-weight C5a receptor antagonists reported to date for the human polymorphonuclear leukocyte (PMN) C5a receptor. H-1 NMR spectroscopy was used to determine solution structures for two cyclic antagonists and to indicate that antagonism is related to a turn conformation, which can be stabilized in cyclic molecules that are preorganized for receptor binding. While several cyclic derivatives were of similar antagonistic potency, the most potent antagonist was a hexapeptide-derived macrocycle AcF[OPdChaWR] with an IC50 = 20 nM against a maximal concentration of C5a (100 nM) on intact human PMNs. Such potent C5a antagonists may be useful probes to investigate the role of C5a in host defenses and to develop therapeutic agents for the treatment of many currently intractable inflammatory conditions.
Resumo:
Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The binary diffusivities of water in low molecular weight sugars; fructose, sucrose and a high molecular weight carbohydrate; maltodextrin (DE 11) and the effective diffusivities of water in mixtures of these sugars (sucrose, glucose, fructose) and maltodextrin (DE 11) were determined using a simplified procedure based on the Regular Regime Approach. The effective diffusivity of these mixtures exhibited both the concentration and molecular weight dependence. Surface stickiness was observed in all samples during desorption, with fructose exhibiting the highest and maltodextrin the lowest. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Dissertation presented to obtain a Ph.D. Degree in Chemical Physics
Resumo:
An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.
Resumo:
Although extended secondary prophylaxis with low-molecular-weight heparin was recently shown to be more effective than warfarin for cancer-related venous thromboembolism, its cost-effectiveness compared to traditional prophylaxis with warfarin is uncertain. We built a decision analytic model to evaluate the clinical and economic outcomes of a 6-month course of low-molecular-weight heparin or warfarin therapy in 65-year-old patients with cancer-related venous thromboembolism. We used probability estimates and utilities reported in the literature and published cost data. Using a US societal perspective, we compared strategies based on quality-adjusted life-years (QALYs) and lifetime costs. The incremental cost-effectiveness ratio of low-molecular-weight heparin compared with warfarin was 149,865 dollars/QALY. Low-molecular-weight heparin yielded a quality-adjusted life expectancy of 1.097 QALYs at the cost of 15,329 dollars. Overall, 46% (7108 dollars) of the total costs associated with low-molecular-weight heparin were attributable to pharmacy costs. Although the low-molecular-weigh heparin strategy achieved a higher incremental quality-adjusted life expectancy than the warfarin strategy (difference of 0.051 QALYs), this clinical benefit was offset by a substantial cost increment of 7,609 dollars. Cost-effectiveness results were sensitive to variation of the early mortality risks associated with low-molecular-weight heparin and warfarin and the pharmacy costs for low-molecular-weight heparin. Based on the best available evidence, secondary prophylaxis with low-molecular-weight heparin is more effective than warfarin for cancer-related venous thromboembolism. However, because of the substantial pharmacy costs of extended low-molecular-weight heparin prophylaxis in the US, this treatment is relatively expensive compared with warfarin.