993 resultados para Local-aware
Resumo:
With the current proliferation of sensor equipped mobile devices such as smartphones and tablets, location aware services are expanding beyond the mere efficiency and work related needs of users, evolving in order to incorporate fun, culture and the social life of users. Today people on the move have more and more connectivity and are expected to be able to communicate with their usual and familiar social networks. That means communications not only with their peers and colleagues, friends and family but also with unknown people that might share their interests, curiosities or happen to use the same social network. Through social networks, location aware blogging, cultural mobile applications relevant information is now available at specific geographical locations and open to feedback and conversations among friends as well as strangers. In fact, nowadays smartphone technologies aloud users to post and retrieve content while on the move, often relating to specific physical landmarks or locations, engaging and being engaged in conversations with strangers as much as their own social network. The use of such technologies and applications while on the move can often lead people to serendipitous discoveries and interactions. Throughout our thesis we are engaging on a two folded investigation: how can we foster and support serendipitous discoveries and what are the best interfaces for it? In fact, to read and write content while on the move is a cognitively intensive task. While the map serves the function of orienting the user, it also absorbs most of the user’s concentration. In order to address this kind of cognitive overload issue with Breadcrumbs we propose a 360 degrees interface that enables the user to find content around them by means of scanning the surrounding space with the mobile device. By using a loose metaphor of a periscope, harnessing the power of the smartphone sensors we designed an interactive interface capable of detecting content around the users and display it in the form of 2 dimensional bubbles which diameter depends on their distance from the users. Users will navigate the space in relation to the content that they are curious about, rather than in relation to the traditional geographical map. Through this model we envisage alleviating a certain cognitive overload generated by having to continuously confront a two dimensional map with the real three dimensional space surrounding the user, but also use the content as a navigational filter. Furthermore this alternative mean of navigating space might bring serendipitous discovery about places that user where not aware of or intending to reach. We hence conclude our thesis with the evaluation of the Breadcrumbs application and the comparison of the 360 degrees interface with a traditional 2 dimensional map displayed on the devise screen. Results from the evaluation are compiled in findings and insights for future use in designing and developing context aware mobile applications.
Resumo:
A local algorithm with local horizon r is a distributed algorithm that runs in r synchronous communication rounds; here r is a constant that does not depend on the size of the network. As a consequence, the output of a node in a local algorithm only depends on the input within r hops from the node. We give tight bounds on the local horizon for a class of local algorithms for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds are due to a refined analysis of existing approaches, while others are obtained by suggesting new algorithms. The algorithms we consider are based on network decompositions guided by a rectangular tiling of the plane. The algorithms are applied to matching, independent set, graph colouring, vertex cover, and dominating set. We also study local algorithms on quasi-UDGs, which are a popular generalisation of UDGs, aimed at more realistic modelling of communication between the network nodes. Analysing the local algorithms on quasi-UDGs allows one to assume that the nodes know their coordinates only approximately, up to an additive error. Despite the localisation error, the quality of the solution to problems on quasi-UDGs remains the same as for the case of UDGs with perfect location awareness. We analyse the increase in the local horizon that comes along with moving from UDGs to quasi-UDGs.
Resumo:
Australia, like all developed and most developing countries, is facing major contextual changes, one of which is an ageing population, largely through declining fertility and increasing longevity (WHO 2002). This will impact on most aspects of global, national, local, community, family and individual interactions and decision-making, including for the nonprofit sector. The sector should be aware that population ageing is increasingly being addressed in public finance and policy agendas within Australia (see, for example, Intergenerational Report 2002-3), as well as by governments in countries such as the United Kingdom, United States and New Zealand, and the Organisation for Economic Co-operation and Development (OECD) and European Economic Policy Committee (EEPC).
Resumo:
Private data stored on smartphones is a precious target for malware attacks. A constantly changing environment, e.g. switching network connections, can cause unpredictable threats, and require an adaptive approach to access control. Context-based access control is using dynamic environmental information, including it into access decisions. We propose an "ecosystem-in-an-ecosystem" which acts as a secure container for trusted software aiming at enterprise scenarios where users are allowed to use private devices. We have implemented a proof-of-concept prototype for an access control framework that processes changes to low-level sensors and semantically enriches them, adapting access control policies to the current context. This allows the user or the administrator to maintain fine-grained control over resource usage by compliant applications. Hence, resources local to the trusted container remain under control of the enterprise policy. Our results show that context-based access control can be done on smartphones without major performance impact.
Resumo:
Event-based systems are seen as good candidates for supporting distributed applications in dynamic and ubiquitous environments because they support decoupled and asynchronous many-to-many information dissemination. Event systems are widely used, because asynchronous messaging provides a flexible alternative to RPC (Remote Procedure Call). They are typically implemented using an overlay network of routers. A content-based router forwards event messages based on filters that are installed by subscribers and other routers. The filters are organized into a routing table in order to forward incoming events to proper subscribers and neighbouring routers. This thesis addresses the optimization of content-based routing tables organized using the covering relation and presents novel data structures and configurations for improving local and distributed operation. Data structures are needed for organizing filters into a routing table that supports efficient matching and runtime operation. We present novel results on dynamic filter merging and the integration of filter merging with content-based routing tables. In addition, the thesis examines the cost of client mobility using different protocols and routing topologies. We also present a new matching technique called temporal subspace matching. The technique combines two new features. The first feature, temporal operation, supports notifications, or content profiles, that persist in time. The second feature, subspace matching, allows more expressive semantics, because notifications may contain intervals and be defined as subspaces of the content space. We also present an application of temporal subspace matching pertaining to metadata-based continuous collection and object tracking.
Resumo:
In a communication system in which K nodes communicate with a central sink node, the following problem of selection often occurs. Each node maintains a preference number called a metric, which is not known to other nodes. The sink node must find the `best' node with the largest metric. The local nature of the metrics requires the selection process to be distributed. Further, the selection needs to be fast in order to increase the fraction of time available for data transmission using the selected node and to handle time-varying environments. While several selection schemes have been proposed in the literature, each has its own shortcomings. We propose a novel, distributed selection scheme that generalizes the best features of the timer scheme, which requires minimal feedback but does not guarantee successful selection, and the splitting scheme, which requires more feedback but guarantees successful selection. The proposed scheme introduces several new ideas into the design of the timer and splitting schemes. It explicitly accounts for feedback overheads and guarantees selection of the best node. We analyze and optimize the performance of the scheme and show that it is scalable, reliable, and fast. We also present new insights about the optimal timer scheme.
Resumo:
Multi-packet reception (MPR) promises significant throughput gains in wireless local area networks (WLANs) by allowing nodes to transmit even in the presence of ongoing transmissions in the medium. However, the medium access control (MAC) layer must now be redesigned to facilitate rather than discourage - these overlapping transmissions. We investigate asynchronous MPR MAC protocols, which successfully accomplish this by controlling the node behavior based on the number of ongoing transmissions in the channel. The protocols use the backoff timer mechanism of the distributed coordination function, which makes them practically appealing. We first highlight a unique problem of acknowledgment delays, which arises in asynchronous MPR, and investigate a solution that modifies the medium access rules to reduce these delays and increase system throughput in the single receiver scenario. We develop a general renewal-theoretic fixed-point analysis that leads to expressions for the saturation throughput, packet dropping probability, and average head-of-line packet delay. We also model and analyze the practical scenario in which nodes may incorrectly estimate the number of ongoing transmissions.
Resumo:
Cooperative relaying combined with selection has been extensively studied in the literature to improve the performance of interference-constrained secondary users in underlay cognitive radio (CR). We present a novel symbol error probability (SEP)-optimal amplify-and-forward relay selection rule for an average interference-constrained underlay CR system. A fundamental principle, which is unique to average interference-constrained underlay CR, that the proposed rule brings out is that the choice of the optimal relay is affected not just by the source-to-relay, relay-to-destination, and relay-to-primary receiver links, which are local to the relay, but also by the direct source-to-destination (SD) link, even though it is not local to any relay. We also propose a simpler, practically amenable variant of the optimal rule called the 1-bit rule, which requires just one bit of feedback about the SD link gain to the relays, and incurs a marginal performance loss relative to the optimal rule. We analyze its SEP and develop an insightful asymptotic SEP analysis. The proposed rules markedly outperform several ad hoc SD link-unaware rules proposed in the literature. They also generalize the interference-unconstrained and SD link-unaware optimal rules considered in the literature.
Resumo:
With the increased availability of new technologies, geography educators are revisiting their pedagogical approaches to teaching and calling for opportunities to share local and international practices which will enhance the learning experience and improve students’ performance. This paper reports on the use of handheld mobile devices, fitted with GPS, by secondary (high) school pupils in geography. Two location-aware activities were completed over one academic year (one per semester) and pre-test and post-test scores for both topics revealed a statistically significant increase in pupils’ performance as measured by the standard national assessments. A learner centred educational approach was adopted with the first mobile learning activity being created by the teacher as an exemplar of effective mobile learning design. Pupils built on their experiences of using mobile learning when they were required to created their own location aware learning task for peer use. An analysis of the qualitative data from the pupils’ journals, group diaries and focus group interviews revealed the five pillars of learner centred education are addressed when using location aware technologies and the use of handheld mobile devices offered greater flexibility and autonomy to the pupils thus altering the level of power and control away from the teacher. Due to the relatively small number of participants in the study, the results are more informative than generalisable however in light of the growing interest in geo-spatial technologies in geography education, this paper offers encouragement and insight into the use of location aware technology in a compulsory school context
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
This paper proposes a conceptual model of a context-aware group support system (GSS) to assist local council employees to perform collaborative tasks in conjunction with inter- and intra-organisational stakeholders. Most discussions about e-government focus on the use of ICT to improve the relationship between government and citizen, not on the relationship between government and employees. This paper seeks to expose the unique culture of UK local councils and to show how a GSS could support local government employer and employee needs.
Resumo:
This paper proposes a conceptual model of a context-aware group support system (GSS) to assist local council employees to perform collaborative tasks in conjunction with inter- and intra-organisational stakeholders. Most discussions about e-government focus on the use of ICT to improve the relationship between government and citizen, not on the relationship between government and employees. This paper seeks to expose the unique culture of UK local councils and to show how a GSS could support local government employer and employee needs.
Resumo:
Demand for local food in the United States has significantly increased over the last decade. In an attempt to understand the drivers of this demand and how they have changed over time, we investigate the literature on organic and local foods over the last few decades. We focus our review on studies that allow comparison of characteristics now associated with both local and organic food. We summarize the major findings of these studies and their implications for understanding drivers of local food demand. Prior to the late 1990s, most studies failed to consider factors now associated with local food, and the few that included these factors found very little support for them. In many cases, the lines between local and organic were blurred. Coincident with the development of federal organic food standards, studies began to find comparatively more support for local food as distinct and separate from organic food. Our review uncovers a distinct turn in the demand for local and organic food. Before the federal organic standards, organic food was linked to small farms, animal welfare, deep sustainability, community support, and many other factors that are not associated with most organic foods today. Based on our review, we argue that demand for local food arose largely in response to corporate cooptation of the organic food market and the arrival of “organic lite.” This important shift in consumer preferences away from organic and toward local food has broad implications for the environment and society. If these patterns of consumer preferences prove to be sustainable, producers, activists, and others should be aware of the implications that these trends have for the food system at large.
Resumo:
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.