984 resultados para Load optimization
Resumo:
Recent changes of paradigm in power systems opened the opportunity to the active participation of new players. The small and medium players gain new opportunities while participating in demand response programs. This paper explores the optimal resources scheduling in two distinct levels. First, the network operator facing large wind power variations makes use of real time pricing to induce consumers to meet wind power variations. Then, at the consumer level, each load is managed according to the consumer preferences. The two-level resources schedule has been implemented in a real-time simulation platform, which uses hardware for consumer’ loads control. The illustrative example includes a situation of large lack of wind power and focuses on a consumer with 18 loads.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
Load transportation in brazilian territory is made difficult by a deficient highway network, result of low maintenance and lack of government supervision. The problem aggravates when we consider the transportation of indivisible loads, mainly because the brazilian highways are not prepared for such task and few companies in Brazil have the necessary equipment suited for this kind of transport. In this dissertation it will be shown the analysis of a specific equipment to transport overweight indivisible loads, called hydraulic modular multi axle trailer. From an existing project (RB.04LE-01), manufactured and homologated in Brazil, it has been studied how the components in this trailer work so it could have been possible to elaborate a new model (RB.04LE-02), with two main objectives: reduction of costs and weight with subsequent increase in the liquid load for roadway transportation. The trailer’s components analyses were made utilizing the theory of fatigue strength of materials and finite element method with the von Misses criteria for a more safety when realizing the calculations
Resumo:
In this article, we study the thermal performance of phase-change material (PCM)-based heat sinks under cyclic heat load and subjected to melt convection. Plate fin type heat sinks made of aluminum and filled with PCM are considered in this study. The heat sink is heated from the bottom. For a prescribed value of heat flux, design of such a heat sink can be optimized with respect to its geometry, with the objective of minimizing the temperature rise during heating and ensuring complete solidification of PCM at the end of the cooling period for a given cycle. For given length and base plate thickness of a heat sink, a genetic algorithm (GA)-based optimization is carried out with respect to geometrical variables such as fin thickness, fin height, and the number of fins. The thermal performance of the heat sink for a given set of parameters is evaluated using an enthalpy-based heat transfer model, which provides the necessary data for the optimization algorithm. The effect of melt convection is studied by taking two cases, one without melt convection (conduction regime) and the other with convection. The results show that melt convection alters the results of geometrical optimization.
Resumo:
Scrapers have established an important position in the earthmoving field as they are independently capable of accomplishing an earthmoving operation. Given that loading a scraper to its capacity does not entail its maximum production, optimizing the scraper’s loading time is an essential prerequisite for successful operations management. The relevant literature addresses the loading time optimization through a graphical method that is founded on the invalid assumption that the hauling time is independent of the load time. To correct this, a new algorithmic optimization method that incorporates the golden section search and the bisection algorithm is proposed. Comparison of the results derived from the proposed and the existing method demonstrates that the latter entails the systematic needless prolongation of the loading stage thus resulting in reduced hourly production and increased cost. Therefore, the proposed method achieves an improved modeling of scraper earthmoving operations and contributes toward a more efficient cost management.
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year
Resumo:
In a northern European climate a typical solar combisystem for a single family house normally saves between 10 and 30 % of the auxiliary energy needed for space heating and domestic water heating. It is considered uneconomical to dimension systems for higher energy savings. Overheating problems may also occur. One way of avoiding these problems is to use a collector that is designed so that it has a low optical efficiency in summer, when the solar elevation is high and the load is small, and a high optical efficiency in early spring and late fall when the solar elevation is low and the load is large.The study investigates the possibilities to design the system and, in particular, the collector optics, in order to match the system performance with the yearly variations of the heating load and the solar irradiation. It seems possible to design practically viable load adapted collectors, and to use them for whole roofs ( 40 m2) without causing more overheating stress on the system than with a standard 10 m2 system. The load adapted collectors collect roughly as much energy per unit area as flat plate collectors, but they may be produced at a lower cost due to lower material costs. There is an additional potential for a cost reduction since it is possible to design the load adapted collector for low stagnation temperatures making it possible to use less expensive materials. One and the same collector design is suitable for a wide range of system sizes and roof inclinations. The report contains descriptions of optimized collector designs, properties of realistic collectors, and results of calculations of system output, stagnation performance and cost performance. Appropriate computer tools for optical analysis, optimization of collectors in systems and a very fast simulation model have been developed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper investigates the problem of appropriate load sharing in an autonomous microgrid. High gain angle droop control ensures proper load sharing, especially under weak system conditions. However it has a negative impact on overall stability. Frequency domain modeling, eigenvalue analysis and time domain simulations are used to demonstrate this conflict. A supplementary loop is proposed around a conventional droop control of each DG converter to stabilize the system while using high angle droop gains. Control loops are based on local power measurement and modulation of the d-axis voltage reference of each converter. Coordinated design of supplementary control loops for each DG is formulated as a parameter optimization problem and solved using an evolutionary technique. The sup-plementary droop control loop is shown to stabilize the system for a range of operating conditions while ensuring satisfactory load sharing.
Resumo:
When the supply voltages are balanced and sinusoidal, load compensation can give both unity power factor (UPF) and perfect harmonic cancellation (PHC) source currents. But under distorted supply voltages, achieving both UPF and PHC currents are not possible and contradictory to each other. Hence there should be an optimal performance between these two important compensation goals. This paper presents an optimal control algorithm for load compensation under unbalanced and distorted supply voltages. In this algorithm source currents are compensated for reactive, imbalance components and harmonic distortions set by the limits. By satisfying the harmonic distortion limits and power balance, this algorithm gives the source currents which will provide the maximum achievable power factor. The detailed simulation results using MATLAB are presented to support the performance of the proposed optimal control algorithm.
Resumo:
Symmetric multi-processor (SMP) systems, or multiple-CPU servers, are suitable for implementing parallel algorithms because they employ dedicated communication devices to enhance the inter-processor communication bandwidth, so that a better performance can be obtained. However, the cost for a multiple-CPU server is high and therefore, the server is usually shared among many users. The work-load due to other users will certainly affect the performance of the parallel programs so it is desirable to derive a method to optimize parallel programs under different loading conditions. In this paper, we present a simple method, which can be applied in SPMD type parallel programs, to improve the speedup by controlling the number of threads within the programs.
Resumo:
The growing demand of air-conditioning is one of the largest contributors to Australia’s overall electricity consumption. This has started to create peak load supply problems for some electricity utilities particularly in Queensland. This research aimed to develop consumer demand side response model to assist electricity consumers to mitigate peak demand on the electrical network. The model developed demand side response model to allow consumers to manage and control air conditioning for every period, it is called intelligent control. This research investigates optimal response of end-user toward electricity price for several cases in the near future, such as: no spike, spike and probability spike price cases. The results indicate the potential of the scheme to achieve energy savings, reducing electricity bills (costs) to the consumer and targeting best economic performance for electrical generation distribution and transmission.
Resumo:
Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.
Resumo:
The objective of this research was to investigate the effect of suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric DLC (Dynamic Load Coefficient), is generally in accordance with the load-sharing metric - DLSC (Dynamic Load Sharing Coefficient). When the static height or static pressure increases, the DLSC optimization ratio declines monotonically. The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.