51 resultados para Lipoperoxidation
Resumo:
The cashew apple (Anacardium occidentale L.) contains phenolic compounds usually related with antioxidant properties. Then, the aim of this study was to investigate its antioxidant capacity. The antioxidant capacity of the hydroalcoholic extract of the cashew apple pulp (EHAlc.) was assessed for the scavenging of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) by in vitro method and by an in vivo essay. For this essay a 30-day oral (gavage, EHAlc. 200 and 400 mg/kg) study was conducted in Wistar male rats, evaluating hepatic, plasma and brain tissues. In DPPH model, the extract demonstrated antioxidant activity of 95% (largest concentration, 1000 mu g/mL). There were found no relevant peroxidation comparing the treated animals with the control group. However, the treated group presented a lower level of brain lipoperoxidation. Also in the treated animals brain tissue was found the largest amount of polyunsaturated fatty acids (PUFA), mainly docosahexaenoic (DHA). Therqfore, the analyzed extract from cashew apple pulp clone CCP-76 contains effective natural antioxidants, responsible for free radical scavenging in vitro and also for decreasing the brain lipoperoxidation and keeping the PUFAS levels in Wistar rats.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Phytochernical work in the search for bioactive metabolites from the methanolic extract of Senna spectabilis green fruits led to the isolation of a new piperidine alkaloid, (+)-3-O-feruloylcassine (1), in addition to the known (-)-spectaline (2) and (-)-3-O-acetylspectaline (3). The isolates were submitted to in vitro evaluation of lipoperoxidation (LPO) and cyclooxygenase enzymes (COX-1 and -2) inhibitory properties and showed moderate antioxidant activities (40-70%) at 100 ppm when compared to commercial standards BHT and vitamin E and moderate inhibition of COX-1 (ca. 40%) and marginal inhibition of COX-2 enzymes (< 10%) at 100 ppm when compared to nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin, rofecoxib, and celecoxib, respectively.
Resumo:
Plants from Iryanthera genus have been traditionally used as food supplements by South American Indians. The MeOH extract of leaves of Iryanthera juruensis, one of the plants endemic to the Amazon region and consumed in Brazil, and the hexane extract from its seeds inhibited lipid peroxidation (LPO) and cyclooxygenase (COX-1 and -2)) enzymes in in vitro assays. Further analyses of these extracts yielded 5-deoxyflavones (1-5) from the leaf extract and sargachromenol (6), sargaquinoic acid (7), a novel juruenolic acid (8), omega-arylalkanoic acids (9a-c), and the lignan guaiacin (10) from the seed extract. Compounds 3-5 inhibited LPO by 86%, 77%, and 88% at 10 ppm, respectively, and compounds 6 and 9a-c showed inhibition at 76% and 78% at 100 ppm, respectively. However, compounds 7 and 8 were inactive and lignan 10 exhibited LPO inhibitory activity by 99% at 100 ppm compared to commercial antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and vitamin E. The flavones 1-5 also inhibited COX-1 and -2 enzymes by 50-65% at 100 ppm. Compound 6 showed high but nonselective inhibition of COX-1 and COX-2 enzymes, when compared to aspirin and Celebrex, a nonsteroidal anti-inflammatory drug (NSAID). Compounds 7 and 10 inhibited COX-1 by 60% and 65% and COX-2 by 37% and 18%, respectively, whereas compounds 8 and 9a-c showed little or no activity against these enzymes.
Resumo:
Inhaled anaesthetics have been studied regarding their genotoxic and mutagenic potential in vivo. Propofol differs from volatile anaesthetics because it does not show mutagenic effects and it has been reported to be an antioxidant. However, there are no studies with propofol and genotoxicity in vivo. The study aimed to evaluate the hypothesis that propofol is not genotoxic and it inhibits lipid peroxidation [malondialdehyde (MDA)] in patients undergoing propofol anaesthesia. ASA physical status I patients scheduled for elective surgery, lasting at least 90 min, were enrolled in this study. Initially, the estimated plasma concentration of propofol was targeted at 4 microg ml(-1) and then maintained at 2-4 microg ml(-1) until the end of surgery. Haemodynamic data were determined at baseline (before premedication) and in conjunction with target-controlled infusion of propofol: after tracheal intubation, 30, 60 and 90 min after anaesthesia induction and at the end of the surgery. Venous blood samples were collected at baseline, after tracheal intubation, at the end of the surgery and on the postoperative first day for evaluating DNA damage in white blood cells (WBCs), by comet assay, and MDA levels. Haemodynamic data did not differ among times. No statistically significant differences were observed for the levels of DNA damage in WBCs, nor in plasma MDA, among the four times. Propofol does not induce DNA damage in WBCs and does not alter MDA in plasma of patients.
Resumo:
Purpose: Use of lipid nanoemulsions as carriers of drugs for therapeutic or diagnostic purposes has been increasingly studied. Here, it was tested whether modifications of core particle constitution could affect the characteristics and biologic properties of lipid nanoemulsions. Methods: Three nanoemulsions were prepared using cholesteryl oleate, cholesteryl stearate, or cholesteryl linoleate as main core constituents. Particle size, stability, pH, peroxidation of the nanoemulsions, and cell survival and uptake by different cell lines were evaluated. Results: It was shown that cholesteryl stearate nanoemulsions had the greatest particle size and all three nanoemulsions were stable during the 237-day observation period. The pH of the three nanoemulsion preparations tended to decrease over time, but the decrease in pH of cholesteryl stearate was smaller than that of cholesteryl oleate and cholesteryl linoleate. Lipoperoxidation was greater in cholesteryl linoleate than in cholesteryl oleate and cholesteryl stearate. After four hours' incubation of human umbilical vein endothelial cells (HUVEC) with nanoemulsions, peroxidation was minimal in the presence of cholesteryl oleate and more pronounced with cholesteryl linoleate and cholesteryl stearate. In contrast, macrophage incubates showed the highest peroxidation rates with cholesteryl oleate. Cholesteryl linoleate induced the highest cell peroxidation rates, except in macrophages. Uptake of cholesteryl oleate nanoemulsion by HUVEC and fibroblasts was greater than that of cholesteryl linoleate and cholesteryl stearate. Uptake of the three nanoemulsions by monocytes was equal. Uptake of cholesteryl oleate and cholesteryl linoleate by macrophages was negligible, but macrophage uptake of cholesteryl stearate was higher. In H292 tumor cells, cholesteryl oleate showed the highest uptakes. HUVEC showed higher survival rates when incubated with cholesteryl stearate and smaller survival with cholesteryl linoleate. H292 survival was greater with cholesteryl stearate. Conclusion: Although all three nanoemulsion types were stable for a long period, considerable differences were observed in size, oxidation status, and cell survival and nanoemulsion uptake in all tested cell lines. Those differences may be helpful in protocol planning and interpretation of data from experiments with lipid nanoemulsions.
Resumo:
The antioxidant capacity of propolis from the southern region of Uruguay was evaluated using in vitro as well as cellular assays. Free radical scavenging capacity was assessed by ORAC, obtaining values significantly higher than those of other natural products (8000 mu mol Trolox equiv/g propolis). ORAC values correlated well with total polyphenol content (determined by Folin-Ciocalteu method) and UV absorption. Total polyphenol content (150 mg gallic acid equiv/g propolis) and flavonoids (45 mg quercetin equiv/g propolis) were similar to values reported for southern Brazilian (group 3) and Argentinean propolis. Flavonoid composition determined by RP-HPLC indicates a strong poplar-tree origin. Samples high in polyphenols efficiently inhibit low-density lipoprotein lipoperoxidation and tyrosine nitration. In addition, Uruguayan propolis was found to induce the expression of endothelial nitric oxide synthase and inhibit endothelial NADPH oxidase, suggesting a potential cardiovascular benefit by increasing nitric oxide bioavailability in the endothelium.
Resumo:
Background/Aims. Nuclear factor kappa B (NF kappa B) plays important role in the pathogenesis of skeletal muscle ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent NF kappa B inhibitor, exhibits protective effects on I/R injury in some tissues. In this report, the effect of CAPE on skeletal muscle I/R injury in rats was studied. Methods. Wistar rats were submitted to sham operation, 120-min hindlimb ischemia, or 120-min hindlimb ischemia plus saline or CAPE treatment followed by 4-h reperfusion. Gastrocnemius muscle injury was evaluated by serum aminotransferase levels, muscle edema, tissue glutathione and malondialdehyde measurement, and scoring of histological damage. Apoptotic nuclei were determined by a terminal uridine deoxynucleotidyl transferase dUTP nick end labeling assay. Muscle neutrophil and mast cell accumulation were also assessed. Lipoperoxidation products and NF kappa B were evaluated by 4-hydroxynonenal and NF kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase in aminotransferases after reperfusion, but with lower levels in the CAPE group. Tissue glutathione levels declined gradually during ischemia to reperfusion, and were partially recovered with CAPE treatment. The histological damage score, muscle edema percentage, tissue malondialdehyde content, apoptosis index, and neutrophil and mast cell infiltration, as well as 4-hydroxynonenal and NF kappa B p65 labeling, were higher in animals submitted to I/R compared with the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect skeletal muscle against I/R, injury in rats. This effect may be associated with the inhibition of the NF kappa B signaling pathway and decrease of the tissue inflammatory response following skeletal muscle I/R. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Purpose - Chronic ethanol consumption induces lipid peroxidation by increasing free radicals or reducing antioxidants and may increase damage to hepatic DNA. Tannins are polyphenolic metabolites present in various plants and one of their effects is antioxidant activity that reduces lipoperoxidation, as is the case for vitamin E. This paper aims to assess the role of tannic acid and vitamin E in lipid peroxidation and in DNA damage in rats receiving ethanol. Design/methodology/approach - A total of 60 Wistar rats were divided into six groups: control + ethanol (0-24hs), tannic acid + ethanol (0-24 hs), and vitamin E + ethanol (0-24 hs). The animals were sacrificed immediately (0 hour) or 24 hours after a period of four weeks of ethanol administration and the following measurements were made: plasma vitamin E and liver glutathione, thiobarbituric acid resistant substances, and a-tocopherol. The comet test was also applied to hepatocytes. Findings - Ethanol administration led to an increase in DNA damage (148.67 +/- 15.45 versus 172.63 +/- 18.94) during a period of 24 hours which was not detected in the groups receiving tannic acid or vitamin E. Steatosis was lower in the groups receiving tannic acid. Originality/value - The paper highlights that antioxidant role of vitamin E and of tannic acid in biological systems submitted to oxidative stress should be reevaluated, especially regarding the protective role of tannic acid against hepatic steatosis.
Resumo:
OBJECTIVE - To determine the prevalence of hyperhomocystinemia in patients with acute ischemic syndrome of the unstable angina type. METHODS - We prospectively studied 46 patients (24 females) with unstable angina and 46 control patients (19 males), paired by sex and age, blinded to the laboratory data. Details of diets, smoking habits, medication used, body mass index, and the presence of hypertension and diabetes were recorded, as were plasma lipid and glucose levels, C-reactive protein, and lipoperoxidation in all participants. Patients with renal disease were excluded. Plasma homocysteine was estimated using high-pressure liquid chromatography. RESULTS - Plasma homocysteine levels were significantly higher in the group of patients with unstable angina (12.7±6.7 µmol/L) than in the control group (8.7±4.4 µmol/L) (p<0.05). Among males, homocystinemia was higher in the group with unstable angina than in the control group, but this difference was not statistically significant (14.1±5.9 µmol/L versus 11.9±4.2 µmol/L). Among females, however, a statistically significant difference was observed between the 2 groups: 11.0±7.4 µmol/L versus 6.4±2.9 µmol/L (p<0.05) in the unstable angina and control groups, respectively. Approximately 24% of the patients had unstable angina at homocysteine levels above 15 µmol/L. CONCLUSION - High homocysteine levels seem to be a relevant prevalent factor in the population with unstable angina, particularly among females.
Resumo:
Silymarin is the flavonoids extracted from the seeds of Silybum marianum (L) Gearth as a mixture of three structural isomers: silybin, silydianin and silychristin, the former being the most active component. Silymarin protects liver cell membrane against hepatotoxic agents and improves liver function in experimental animals and humans. It is generally accepted that silymarin exerts a membrane-stabilizing action preventing or inhibiting membrane peroxidation. The experiments with soybean lipoxygenase showed that the three components of silymarin brought about a concentration-dependent non-competitive inhibition of the lipoxygenase. The experiments also showed an analogous interaction with animal lipoxygenase, thus showing that an inhibition of the peroxidation of the fatty acid in vivo was self-evident. Silybin almost completely suppressed the formation of PG at the highest concentration (0.3 mM) and proved to be an inhibitor of PG synthesis in vitro. In our experiments, silybin at lower dose (65 mg/Kg) decreased liver lipoperoxide content and microsomal lipoperoxidation to 84.5% and 68.55% of those of the scalded control rats respectively, and prevented the decrease of liver microsomal cytochrome p-450 content and p-nitroanisole-0-demethylase activity 24 h post-scalding. Effects of silymarin on cardiovascular systen have been studied in this university since 1980. O. O silymarin 800 mg/Kg/d or silybin 600 mg/Kg/d reduced plasma total cholesterol, LDL-C and VLDL-C. They however, enhanced HDL-C in hyperlipenic rats. Further studies showed that silymarin enhanced HDL-C in hyperlipemic rats. Further studies showed that silymarin enhanced HDL-C but didn't affect HDL-C, a property of this component which is beneficial to treatment of atherosclerosis. The results showed silymarin 80 mg or silybin 60 mg decreased in vitro platelet aggregation (porcentagem) in rats. The maximal platelet aggregation induced by ADP declined significantly, and time to reach maximal platelet aggregation and five-minute disaggregation didn't change. In our experiments, iv silybin 22,4 mg/kg lowered the amplitude and duration of diastolic blood pressure (DBP) more than those of systolic (SBP), but the descending aortic blood flow, cardiac contractility and ECG did not change significantly in anesthetized open-chest cats. The results indicated a reduction of peripheral resistance and dilatatory action on the resistant blood vessels. These effects are beneficial to coronary heart disease. We also observed the effects of silybin on morphological change, the release of glutamic oxaloacetate aminotrasferase (GOT) and lactate dehydrogenase (LDH) as well as the radioactivity of 3H-TdR incorporated into DNA in normal cardiac cells and cells infected by coxsackie B5, virus os newborn rats. The results showed that silynin did not affect the morphology of normal cell, and that the pathological change of cells infected by virus was delayed and reduced as compared to control. We have investigated the effect of silybin on synthesis and release of LTs in the cultured porcine cerebral basilar arteries (PCBA). Silybin 100 and 500 µmol/L declined the amounts of LTs released from the PCBA incubsated in the presence of A 23187, AA and indomenthacin. The result suggests that silybin can inhibit the activity of 5-lipoxygenase of cerebral blood vessel and may protect the brain from ischemia.
Resumo:
The aim of this pilot project was to evaluate the feasibility of assessing the deposited particle dose in the lungs by applying the dynamic light scattering-based methodology in exhaled breath condensateur (EBC). In parallel, we developed and validated two analytical methods allowing the determination of inflammatory (hydrogen peroxide - H2O2) and lipoperoxidation (malondialdehyde - MDA) biomarkers in exhaled breath condensate. Finally, these methods were used to assess the particle dose and consecutive inflammatory effect in healthy nonsmoker subjects exposed to environmental tobacco smoke in controlled situations was done.
Resumo:
Hydrogen peroxide (H2O2) perfused into the aorta of the isolated rat heart induces a positive inotropic effect, with cardiac arrhythmia such as extrasystolic potentiation or cardiac contractures, depending on the dose. The last effect is similar to the "stone heart" observed in reperfusion injury and may be ascribed to lipoperoxidation (LPO) of the membrane lipids, to protein damage, to reduction of the ATP level, to enzymatic alterations and to cardioactive compounds liberated by LPO. These effects may result in calcium overload of the cardiac fibers and contracture ("stone heart"). Hearts from male Wistar rats (300-350 g) were perfused at 31oC with Tyrode, 0.2 mM trolox C, 256 mM H2O2 or trolox C + H2O2. Cardiac contractures (baseline elevation of the myograms obtained) were observed when hearts were perfused with H2O2 (Tyrode: 5.9 ± 3.2; H2O2: 60.5 ± 13.9% of the initial value); perfusion with H2O2 increased the LPO of rat heart homogenates measured by chemiluminescence (Tyrode: 3,199 ± 259; H2O2: 5,304 ± 133 cps mg protein-1 60 min-1), oxygen uptake (Tyrode: 0.44 ± 0.1; H2O2: 3.2 ± 0.8 nmol min-1 mg protein-1) and malonaldehyde (TBARS) formation (Tyrode: 0.12 ± 0; H2O2: 0.37 ± 0.1 nmol/ml). Previous perfusion with 0.2 mM trolox C reduced the LPO (chemiluminescence: 4,098 ± 531), oxygen uptake (0.51 ± 0) and TBARS (0.13 ± 0) but did not prevent the H2O2-induced contractures (33.3 ± 16%). ATP (Tyrode: 2.84 ± 0; H2O2: 0.57 ± 0) and glycogen levels (Tyrode: 0.46 ± 0; H2O2: 0.26 ± 0) were reduced by H2O2. Trolox did not prevent these effects (ATP: 0.84 ± 0 and glycogen: 0.27 ± 0). Trolox C is known to be more effective than a -tocopherol or g -tocopherol in reducing LPO though it lacks the phytol portion of vitamin E to be fixed to the cell membranes. Trolox C, unlike vitamin A, did not prevent the glycogen reduction induced by H2O2. Trolox C induced a positive chronotropic effect that resulted in higher energy consumption. The reduction of energy level seemed to be more important than LPO in the mechanism of H2O2-induced contracture
Resumo:
The objective of the present study was to explore the regulatory mechanisms of free radicals during streptozotocin (STZ)-induced pancreatic damage, which may involve nitric oxide (NO) production as a modulator of cellular oxidative stress. Removal of oxygen species by incubating pancreatic tissues in the presence of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) (1 U/ml) produced a decrease in nitrite levels (42%) and NO synthase (NOS) activity (50%) in diabetic but not in control samples. When NO production was blocked by N G-monomethyl-L-arginine (L-NMMA) (600 µM), SOD activity increased (15.21 ± 1.23 vs 24.40 ± 2.01 U/mg dry weight). The increase was abolished when the NO donor, spermine nonoate, was added to the incubating medium (13.2 ± 1.32). Lipid peroxidation was lower in diabetic tissues when PEG-SOD was added (0.40 ± 0.02 vs 0.20 ± 0.03 nmol/mg protein), and when L-NMMA blocked NOS activity in the incubating medium (0.28 ± 0.05); spermine nonoate (100 µM) abolished the decrease in lipoperoxide level (0.70 ± 0.02). We conclude that removal of oxygen species produces a decrease in pancreatic NO and NOS levels in STZ-treated rats. Moreover, inhibition of NOS activity produces an increase in SOD activity and a decrease in lipoperoxidation in diabetic pancreatic tissues. Oxidative stress and NO pathway are related and seem to modulate each other in acute STZ-induced diabetic pancreas in the rat.
Resumo:
Metabolic syndrome (MS) is a multifactorial disease involving inflammatory activity and endothelial dysfunction. The aim of the present study was to evaluate the relationship between the changes in lipoperoxidation, in immunological and biochemical parameters and nitric oxide metabolite (NOx) levels in MS patients. Fifty patients with MS (4 males/46 females) and 50 controls (3 males/47 females) were studied. Compared to control (Mann-Whitney test), MS patients presented higher serum levels (P < 0.05) of fibrinogen: 314 (185-489) vs 262 (188-314) mg/dL, C-reactive protein (CRP): 7.80 (1.10-46.50) vs 0.70 (0.16-5.20) mg/dL, interleukin-6: 3.96 (3.04-28.18) vs 3.33 (2.55-9.63) pg/mL, uric acid: 5.45 (3.15-9.65) vs 3.81 (2.70-5.90) mg/dL, and hydroperoxides: 20,689 (19,076-67,182) vs 18,636 (15,926-19,731) cpm. In contrast, they presented lower (P < 0.05) adiponectin: 7.11 (3.19-18.22) vs 12.31 (9.11-27.27) µg/mL, and NOx levels: 5.69 (2.36-8.18) vs 6.72 (5.14-12.43) µM. NOx was inversely associated (Spearman’s rank correlation) with body mass index (r = -0.2858, P = 0.0191), insulin resistance determined by the homeostasis model assessment (r = -0.2530, P = 0.0315), CRP (r = -0.2843, P = 0.0171) and fibrinogen (r = -0.2464, P = 0.0413), and positively correlated with hydroperoxides (r = 0.2506, P = 0.0408). In conclusion, NOx levels are associated with obesity, insulin resistance, oxidative stress, and inflammatory markers. The high uric acid levels together with reactive oxygen species generation may be responsible for the reduced NO levels, which in turn lead to endothelial dysfunction. The elevated plasma chemiluminescence reflecting both increased plasma oxidation and reduced antioxidant capacity may play a role in the MS mechanism.