951 resultados para Linkage analysis
Resumo:
Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h2 = 0.53, P = 0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P = 0.003) and chromosome 9q22.32 (P = 0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P ≤ 0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1.
Resumo:
OBJECTIVE(S): An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. METHODS: This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. RESULTS: A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h(2) = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h(2) = 0.33) and 4 (h(2) = 0.42), respectively. CONCLUSION(S): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
Objective. To undertake a systematic wholegenome screen to identify regions exhibiting genetic linkage to rheumatoid arthritis (RA). Methods. Two hundred fifty-two RA-affected sibling pairs from 182 UK families were genotyped using 365 highly informative microsatellite markers. Microsatellite genotyping was performed using fluorescent polymerase chain reaction primers and semiautomated DNA sequencing technology. Linkage analysis was undertaken using MAPMAKER/SIBS for single-point and multipoint analysis. Results. Significant linkage (maximum logarithm of odds score 4.7 [P = 0.000003] at marker D6S276, 1 cM from HLA-DRB1) was identified around the major histocompatibility complex (MHC) region on chromosome 6. Suggestive linkage (P < 7.4 × 10-4) was identified on chromosome 6q by single- and multipoint analysis. Ten other sites of nominal linkage (P < 0.05) were identified on chromosomes 3p, 4q, 7p, 2 regions of 10q, 2 regions of 14q, 16p, 21q, and Xq by single-point analysis and on 3 sites (1q, 14q, and 14q) by multipoint analysis. Conclusion. Linkage to the MHC region was confirmed. Eleven non-HLA regions demonstrated evidence of suggestive or nominal linkage, but none reached the genome-wide threshold for significant linkage (P = 2.2 × 10-5). Results of previous genome screens have suggested that 6 of these regions may be involved in RA susceptibility.
Resumo:
CONTEXT People meeting diagnostic criteria for anxiety or depressive disorders tend to score high on the personality scale of neuroticism. Studying this personality dimension can give insights into the etiology of these important psychiatric disorders. OBJECTIVES To undertake a comprehensive genome-wide linkage study of neuroticism using large study samples that have been measured multiple times and to compare the results between countries for replication and across time within countries for consistency. DESIGN Genome-wide linkage scan. SETTING Twin individuals and their family members from Australia and the Netherlands. PARTICIPANTS Nineteen thousand six hundred thirty-five sibling pairs completed self-report questionnaires for neuroticism up to 5 times over a period of up to 22 years. Five thousand sixty-nine sibling pairs were genotyped with microsatellite markers. METHODS Nonparametric linkage analyses were conducted in MERLIN-REGRESS for the mean neuroticism scores averaged across time. Additional analyses were conducted for the time-specific measures of neuroticism from each country to investigate consistency of linkage results. RESULTS Three chromosomal regions exceeded empirically derived thresholds for suggestive linkage using mean neuroticism scores: 10p 5 Kosambi cM (cM) (Dutch study sample), 14q 103 cM (Dutch study sample), and 18q 117 cM (combined Australian and Dutch study sample), but only 14q retained significance after correction for multiple testing. These regions all showed evidence for linkage in individual time-specific measures of neuroticism and 1 (18q) showed some evidence for replication between countries. Linkage intervals for these regions all overlap with regions identified in other studies of neuroticism or related traits and/or in studies of anxiety in mice. CONCLUSIONS Our results demonstrate the value of the availability of multiple measures over time and add to the optimism reported in recent reviews for replication of linkage regions for neuroticism. These regions are likely to harbor causal variants for neuroticism and its related psychiatric disorders and can inform prioritization of results from genome-wide association studies.
Resumo:
Most information in linkage analysis for quantitative traits comes from pairs of relatives that are phenotypically most discordant or concordant. Confounding this, within-family outliers from non-genetic causes may create false positives and negatives. We investigated the influence of within-family outliers empirically, using one of the largest genome-wide linkage scans for height. The subjects were drawn from Australian twin cohorts consisting of 8447 individuals in 2861 families, providing a total of 5815 possible pairs of siblings in sibships. A variance component linkage analysis was performed, either including or excluding the within-family outliers. Using the entire dataset, the largest LOD scores were on chromosome 15q (LOD 2.3) and 11q (1.5). Excluding within-family outliers increased the LOD score for most regions, but the LOD score on chromosome 15 decreased from 2.3 to 1.2, suggesting that the outliers may create false negatives and false positives, although rare alleles of large effect may also be an explanation. Several regions suggestive of linkage to height were found after removing the outliers, including 1q23.1 (2.0), 3q22.1 (1.9) and 5q32 (2.3). We conclude that the investigation of the effect of within-family outliers, which is usually neglected, should be a standard quality control measure in linkage analysis for complex traits and may reduce the noise for the search of common variants of modest effect size as well as help identify rare variants of large effect and clinical significance. We suggest that the effect of within-family outliers deserves further investigation via theoretical and simulation studies.
Resumo:
Microsatellites were screened in a backcross family of the Pacific oyster, Crassostrea gigas. Fifteen microsatellite loci were distinguishable and polymorphic with 6 types of allele-combinations. Null alleles were detected in 46.7% of loci, accounting for 11.7% of the total alleles. Four loci did not segregate in Mendelian Ratios. Three linkage groups were identified among 7 of the 15 segregating loci. Fluorescence-based automated capillary electrophoresis (ABI 310 Genetic Analyzer) that used to detect the microsatellite loci, has been proved a fast, precise, and reliable method in microsatellite genotyping.
Resumo:
Clear evidence exists for heritability of humanlongevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/ APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10). By combined modeling of linkage and association, we showed that association of longevity with APOEe4 and APOEe2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
Resumo:
Currently there is no general method to study the impact of population admixture within families on the assumptions of random mating and consequently, Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LE) and on the inference obtained from traditional linkage analysis. ^ First, through simulation, the effect of admixture of two populations on the log of the odds (LOD) score was assessed, using Prostate Cancer as the typical disease model. Comparisons between simulated mixed and homogeneous families were performed. LOD scores under both models of admixture (within families and within a data set of homogeneous families) were closest to the homogeneous family scores of the population having the highest mixing proportion. Random sampling of families or ascertainment of families with disease affection status did not affect this observation, nor did the mode of inheritance (dominant/recessive) or sample size. ^ Second, after establishing the effect of admixture on the LOD score and inference for linkage, the presence of induced disequilibria by population admixture within families was studied and an adjustment procedure was developed. The adjustment did not force all disequilibria to disappear but because the families were adjusted for the population admixture, those replicates where the disequilibria exist are no longer affected by the disequilibria in terms of maximization for linkage. Furthermore, the adjustment was able to exclude uninformative families or families that had such a high departure from HWE and/or LE that their LOD scores were not reliable. ^ Together these observations imply that the presence of families of mixed population ancestry impacts linkage analysis in terms of the LOD score and the estimate of the recombination fraction. ^
Resumo:
Platelet count is a highly heritable trait with genetic factors responsible for around 80% of the phenotypic variance. We measured platelet count longitudinally in 327 monozygotic and 418 dizygotic twin pairs at 12, 14 and 16 years of age. We also performed a genome-wide linkage scan of these twins and their families in an attempt to localize QTLs that influenced variation in platelet concentrations. Suggestive linkage was observed on chromosome 19q13.13-19q13.31 at 12 (LOD=2.12, P=0.0009), 14 (LOD=2.23, P=0.0007) and 16 (LOD=1.01, P=0.016) years of age and multivariate analysis of counts at all three ages increased the LOD to 2.59 (P=0.0003). A possible candidate in this region is the gene for glycoprotein VI, a receptor involved in platelet aggregation. Smaller linkage peaks were also seen at 2p, 5p, 5q, 10p and 15q. There was little evidence for linkage to the chromosomal regions containing the genes for thrombopoietin (3q27) and the thrombopoietin receptor (1q34), suggesting that polymorphisms in these genes do not contribute substantially to variation in platelet count between healthy individuals.