998 resultados para Linear Capillary Instability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Instability of the orthogonal swept attachment line boundary layer has received attention by local1, 2 and global3–5 analysis methods over several decades, owing to the significance of this model to transition to turbulence on the surface of swept wings. However, substantially less attention has been paid to the problem of laminar flow instability in the non-orthogonal swept attachment-line boundary layer; only a local analysis framework has been employed to-date.6 The present contribution addresses this issue from a linear global (BiGlobal) instability analysis point of view in the incompressible regime. Direct numerical simulations have also been performed in order to verify the analysis results and unravel the limits of validity of the Dorrepaal basic flow7 model analyzed. Cross-validated results document the effect of the angle _ on the critical conditions identified by Hall et al.1 and show linear destabilization of the flow with decreasing AoA, up to a limit at which the assumptions of the Dorrepaal model become questionable. Finally, a simple extension of the extended G¨ortler-H¨ammerlin ODE-based polynomial model proposed by Theofilis et al.4 is presented for the non-orthogonal flow. In this model, the symmetries of the three-dimensional disturbances are broken by the non-orthogonal flow conditions. Temporal and spatial one-dimensional linear eigenvalue codes were developed, obtaining consistent results with BiGlobal stability analysis and DNS. Beyond the computational advantages presented by the ODE-based model, it allows us to understand the functional dependence of the three-dimensional disturbances in the non-orthogonal case as well as their connections with the disturbances of the orthogonal stability problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial disturbance amplitude has an effect on stretching jets that is not observed for capillary jet instability where gravitational acceleration is not significant. For inviscid and viscous fluids, gravity diminishes the effect that the initial amplitude has on jet length and its ability to prevent satellite formation. In stretching jets, not only the dimensionless frequency of the disturbance but also its initial amplitude must be known to properly study their satellite forming nature. Indirect methods of relating the applied disturbance energy to an initial velocity perturbation are not simple when the gravity parameter G is changing. When G A 0, the optimum disturbance frequency Omega(opt) and the initial disturbance amplitude are related, with Omega(opt) proportional to f (G) x In(1 /epsilon(nu)). Results from numerical simulations and experiments are presented here. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summationby- parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of ð (10 4). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical study of linear global instability of incompressible flow over a rectangular spanwise-periodic open cavity in an unconfined domain is presented. Comparisons with the limited number of results available in the literature are shown. Subsequently, the parameter space is scanned in a systematic manner, varying Reynolds number, incoming boundary-layer thickness and length-to-depth aspect ratio. This permits documenting the neutral curves and leading eigenmode characteristics of this flow. Correlations constructed using the results obtained collapse all available theoretical data on the three-dimensional instabilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The focus of this paper is on the effect of gravity stretching on disturbed capillary jet instability. Break-up and droplet formation under low flows are simulated using finite difference solution of a one-dimensional approximation of disturbed capillary jet instability chosen from the work by Eggers and Dupont (J. Fluid Mech. 155 (1994) 289). Experiments were conducted using water and aqueous glycerol solutions to compare with simulations. We use a gravity parameter, G, which quantifies gravity stretching by relating flow velocity, orifice size and acceleration and is the reciprocal of the Fronde number. The optimum disturbance frequency Omega(opt) was found to be inversely proportional to G. However, this relationship appears to be complex for the range of G's investigated. At low G, the relationship between Omega(opt) and G appears to be linear but takes on a weakly decaying like trend as G increases. As flows are lowered, the satellite-free regime decreases, although experimental observation found that merging of main and satellite drops sometimes offset this effect to result in monodispersed droplet trains post break-up. Viscosity did not significantly affect the relationship between the disturbance frequency and G, although satellite drops could be seen more clearly close to the upper limit for instability at high G's. It is possible to define regimes of satellite formation under low flows by considering local wavenumbers at the point of instability. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of modular home made capillary electrophoresis equipment with spectrophotometric detection, at a visible region by means of a miniaturized linear charge coupled device, was evaluated for the determination of four food dyes. This system presents a simple but efficient home made cell detection scheme. A computer program that converts the spectral data after each run into the electropherograms was developed to evaluate the analytical parameters. The dyes selected for analytical evaluation of the system were Brilliant Blue FCF, Fast Green FCF, Sunset Yellow FCF, and Amaranth. Separation was carried out in a 29cm length and 75 mu m I.D fused silica capillary, using 10mmolL-1 borate buffer at pH 9, with separation voltage of 7.5kV. The detection limits for the dyes were between 0.3 and 1.5mgL-1 and the method presented adequate linearity over the ranges studied, with correlation coefficients greater than 0.99. The method was applied for determination and quantification of these dyes in fruit juices and candies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an experimental and numerical study examining the dynamics of a gravity-driven contact line of a thin viscous film traveling down the outside of a vertical cylinder of radius R. Experiments on cylinders with radii ranging between 0.159 and 3.81 cm show that the contact line is unstable to a fingering pattern for two fluids with differing viscosities, surface tensions, and wetting properties. The dynamics of the contact line is studied and results are compared to previous studies of inclined plane experiments in order to understand the influence substrate curvature plays on the fingering pattern. A lubrication model is derived for the film height in the limit that ε = H/R≪1, where H is the upstream film thickness, and in terms of a Bond number ρgR3/(γH), and the linear stability of the contact line is analyzed using traveling wave solutions. Curvature controls the capillary ridge height of the traveling wave and the range of unstable wavelength when ε = O(10-1), whereas the shape and stability of the contact line converge to the behavior one observes on a vertical plane when ε ≤ O(10-2). The most unstable wave mode, cutoff wave mode for neutral stability, and maximum growth rate scale as 0.45 where = ρgR2/γ ≥ 1.3, and the contact line is unstable to fingering when ≥ 0.56. Using the experimental data to extrapolate outside the range of validity of the thin film model, we estimate the contact line is stable when <0.56. Agreement is excellent between the model and the experimental data for the wave number (i.e., number of fingers) and wavelength of the fingering pattern that forms along the contact line.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Instability analysis of compressible orthogonal swept leading-edge boundary layer flow was performed in the context of BiGlobal linear theory. 1, 2 An algorithm was developed exploiting the sparsity characteristics of the matrix discretizing the PDE-based eigenvalue problem. This allowed use of the MUMPS sparse linear algebra package 3 to obtain a direct solution of the linear systems associated with the Arnoldi iteration. The developed algorithm was then applied to efficiently analyze the effect of compressibility on the stability of the swept leading-edge boundary layer and obtain neutral curves of this flow as a function of the Mach number in the range 0 ≤ Ma ≤ 1. The present numerical results fully confirmed the asymptotic theory results of Theofilis et al. 4 Up to the maximum Mach number value studied, it was found that an increase of this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis is to study the mechanisms of instability that occur in swept wings when the angle of attack increases. For this, a simplified model for the a simplified model for the non-orthogonal swept leading edge boundary layer has been used as well as different numerical techniques in order to solve the linear stability problem that describes the behavior of perturbations superposed upon this base flow. Two different approaches, matrix-free and matrix forming methods, have been validated using direct numerical simulations with spectral resolution. In this way, flow instability in the non-orthogonal swept attachment-line boundary layer is addressed in a linear analysis framework via the solution of the pertinent global (Bi-Global) PDE-based eigenvalue problem. Subsequently, a simple extension of the extended G¨ortler-H¨ammerlin ODEbased polynomial model proposed by Theofilis, Fedorov, Obrist & Dallmann (2003) for orthogonal flow, which includes previous models as particular cases and recovers global instability analysis results, is presented for non-orthogonal flow. Direct numerical simulations have been used to verify the stability results and unravel the limits of validity of the basic flow model analyzed. The effect of the angle of attack, AoA, on the critical conditions of the non-orthogonal problem has been documented; an increase of the angle of attack, from AoA = 0 (orthogonal flow) up to values close to _/2 which make the assumptions under which the basic flow is derived questionable, is found to systematically destabilize the flow. The critical conditions of non-orthogonal flows at 0 _ AoA _ _/2 are shown to be recoverable from those of orthogonal flow, via a simple analytical transformation involving AoA. These results can help to understand the mechanisms of destabilization that occurs in the attachment line of wings at finite angles of attack. Studies taking into account variations of the pressure field in the basic flow or the extension to compressible flows are issues that remain open. El objetivo de esta tesis es estudiar los mecanismos de la inestabilidad que se producen en ciertos dispositivos aerodinámicos cuando se aumenta el ángulo de ataque. Para ello se ha utilizado un modelo simplificado del flujo de base, así como diferentes técnicas numéricas, con el fin de resolver el problema de estabilidad lineal asociado que describe el comportamiento de las perturbaciones. Estos métodos; sin y con formación de matriz, se han validado utilizando simulaciones numéricas directas con resolución espectral. De esta manera, la inestabilidad del flujo de capa límite laminar oblicuo entorno a la línea de estancamiento se aborda en un marco de análisis lineal por medio del método Bi-Global de resolución del problema de valores propios en derivadas parciales. Posteriormente se propone una extensión simple para el flujo no-ortogonal del modelo polinomial de ecuaciones diferenciales ordinarias, G¨ortler-H¨ammerlin extendido, propuesto por Theofilis et al. (2003) para el flujo ortogonal, que incluye los modelos previos como casos particulares y recupera los resultados del analisis global de estabilidad lineal. Se han realizado simulaciones directas con el fin de verificar los resultados del análisis de estabilidad así como para investigar los límites de validez del modelo de flujo base utilizado. En este trabajo se ha documentado el efecto del ángulo de ataque AoA en las condiciones críticas del problema no ortogonal obteniendo que el incremento del ángulo de ataque, de AoA = 0 (flujo ortogonal) hasta valores próximos a _/2, en el cual las hipótesis sobre las que se basa el flujo base dejan de ser válidas, tiende sistemáticamente a desestabilizar el flujo. Las condiciones críticas del caso no ortogonal 0 _ AoA _ _/2 pueden recuperarse a partir del caso ortogonal mediante el uso de una transformación analítica simple que implica el ángulo de ataque AoA. Estos resultados pueden ayudar a comprender los mecanismos de desestabilización que se producen en el borde de ataque de las alas de los aviones a ángulos de ataque finitos. Como tareas pendientes quedaría realizar estudios que tengan en cuenta variaciones del campo de presión en el flujo base así como la extensión de éste al caso de flujos compresibles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct numerical simulations are performed to analyze the three-dimensional instability of flows over three-dimensional cavities. The flow structures at different Reynolds numbers are investigated by using the spectral-element solver nek5000. As the Reynolds number increasing, the lateral wall effects become more important, the recirculation zone shrinks, the front vortex increases and the flow structure inside of the cavity becomes more complex. Results show that the flow bifurcates from a steady state to an oscillatory regime beyond a value of Reynolds number Re = 1100.