986 resultados para Likelihood function
Resumo:
This report reviews literature on the rate of convergence of maximum likelihood estimators and establishes a Central Limit Theorem, which yields an O(1/sqrt(n)) rate of convergence of the maximum likelihood estimator under somewhat relaxed smoothness conditions. These conditions include the existence of a one-sided derivative in θ of the pdf, compared to up to three that are classically required. A verification through simulation is included in the end of the report.
Resumo:
Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.
Resumo:
We propose a simple method of constructing quasi-likelihood functions for dependent data based on conditional-mean-variance relationships, and apply the method to estimating the fractal dimension from box-counting data. Simulation studies were carried out to compare this method with the traditional methods. We also applied this technique to real data from fishing grounds in the Gulf of Carpentaria, Australia
Resumo:
Quasi-likelihood (QL) methods are often used to account for overdispersion in categorical data. This paper proposes a new way of constructing a QL function that stems from the conditional mean-variance relationship. Unlike traditional QL approaches to categorical data, this QL function is, in general, not a scaled version of the ordinary log-likelihood function. A simulation study is carried out to examine the performance of the proposed QL method. Fish mortality data from quantal response experiments are used for illustration.
Resumo:
Having the ability to work with complex models can be highly beneficial, but the computational cost of doing so is often large. Complex models often have intractable likelihoods, so methods that directly use the likelihood function are infeasible. In these situations, the benefits of working with likelihood-free methods become apparent. Likelihood-free methods, such as parametric Bayesian indirect likelihood that uses the likelihood of an alternative parametric auxiliary model, have been explored throughout the literature as a good alternative when the model of interest is complex. One of these methods is called the synthetic likelihood (SL), which assumes a multivariate normal approximation to the likelihood of a summary statistic of interest. This paper explores the accuracy and computational efficiency of the Bayesian version of the synthetic likelihood (BSL) approach in comparison to a competitor known as approximate Bayesian computation (ABC) and its sensitivity to its tuning parameters and assumptions. We relate BSL to pseudo-marginal methods and propose to use an alternative SL that uses an unbiased estimator of the exact working normal likelihood when the summary statistic has a multivariate normal distribution. Several applications of varying complexity are considered to illustrate the findings of this paper.
Resumo:
A popular way to account for unobserved heterogeneity is to assume that the data are drawn from a finite mixture distribution. A barrier to using finite mixture models is that parameters that could previously be estimated in stages must now be estimated jointly: using mixture distributions destroys any additive separability of the log-likelihood function. We show, however, that an extension of the EM algorithm reintroduces additive separability, thus allowing one to estimate parameters sequentially during each maximization step. In establishing this result, we develop a broad class of estimators for mixture models. Returning to the likelihood problem, we show that, relative to full information maximum likelihood, our sequential estimator can generate large computational savings with little loss of efficiency.
Resumo:
Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few years, following their integration with Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They have been applied primarily to estimating the parameters of a given model, but can also be used to compare models. Here we present novel likelihood-free approaches to model comparison, based upon the independent estimation of the evidence of each model under study. Key advantages of these approaches over previous techniques are that they allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models. We validate the proposed methods using a simple exponential family problem before providing a realistic problem from human population genetics: the comparison of different demographic models based upon genetic data from the Y chromosome.
Resumo:
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1-39.], and (ii) an approximation to the one proposed by Barndorff-Nielsen [Barndorff-Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33-53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655-661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff-Nielsen`s adjustment.
Resumo:
Ties among event times are often recorded in survival studies. For example, in a two week laboratory study where event times are measured in days, ties are very likely to occur. The proportional hazards model might be used in this setting using an approximated partial likelihood function. This approximation works well when the number of ties is small. on the other hand, discrete regression models are suggested when the data are heavily tied. However, in many situations it is not clear which approach should be used in practice. In this work, empirical guidelines based on Monte Carlo simulations are provided. These recommendations are based on a measure of the amount of tied data present and the mean square error. An example illustrates the proposed criterion.
Resumo:
We propose a unifying picture where the notion of generalized entropy is related to information theory by means of a group-theoretical approach. The group structure comes from the requirement that an entropy be well defined with respect to the composition of independent systems, in the context of a recently proposed generalization of the Shannon-Khinchin axioms. We associate to each member of a large class of entropies a generalized information measure, satisfying the additivity property on a set of independent systems as a consequence of the underlying group law. At the same time, we also show that Einstein's likelihood function naturally emerges as a byproduct of our informational interpretation of (generally nonadditive) entropies. These results confirm the adequacy of composable entropies both in physical and social science contexts.
Resumo:
In longitudinal data analysis, our primary interest is in the regression parameters for the marginal expectations of the longitudinal responses; the longitudinal correlation parameters are of secondary interest. The joint likelihood function for longitudinal data is challenging, particularly for correlated discrete outcome data. Marginal modeling approaches such as generalized estimating equations (GEEs) have received much attention in the context of longitudinal regression. These methods are based on the estimates of the first two moments of the data and the working correlation structure. The confidence regions and hypothesis tests are based on the asymptotic normality. The methods are sensitive to misspecification of the variance function and the working correlation structure. Because of such misspecifications, the estimates can be inefficient and inconsistent, and inference may give incorrect results. To overcome this problem, we propose an empirical likelihood (EL) procedure based on a set of estimating equations for the parameter of interest and discuss its characteristics and asymptotic properties. We also provide an algorithm based on EL principles for the estimation of the regression parameters and the construction of a confidence region for the parameter of interest. We extend our approach to variable selection for highdimensional longitudinal data with many covariates. In this situation it is necessary to identify a submodel that adequately represents the data. Including redundant variables may impact the model’s accuracy and efficiency for inference. We propose a penalized empirical likelihood (PEL) variable selection based on GEEs; the variable selection and the estimation of the coefficients are carried out simultaneously. We discuss its characteristics and asymptotic properties, and present an algorithm for optimizing PEL. Simulation studies show that when the model assumptions are correct, our method performs as well as existing methods, and when the model is misspecified, it has clear advantages. We have applied the method to two case examples.
Resumo:
In the study of traffic safety, expected crash frequencies across sites are generally estimated via the negative binomial model, assuming time invariant safety. Since the time invariant safety assumption may be invalid, Hauer (1997) proposed a modified empirical Bayes (EB) method. Despite the modification, no attempts have been made to examine the generalisable form of the marginal distribution resulting from the modified EB framework. Because the hyper-parameters needed to apply the modified EB method are not readily available, an assessment is lacking on how accurately the modified EB method estimates safety in the presence of the time variant safety and regression-to-the-mean (RTM) effects. This study derives the closed form marginal distribution, and reveals that the marginal distribution in the modified EB method is equivalent to the negative multinomial (NM) distribution, which is essentially the same as the likelihood function used in the random effects Poisson model. As a result, this study shows that the gamma posterior distribution from the multivariate Poisson-gamma mixture can be estimated using the NM model or the random effects Poisson model. This study also shows that the estimation errors from the modified EB method are systematically smaller than those from the comparison group method by simultaneously accounting for the RTM and time variant safety effects. Hence, the modified EB method via the NM model is a generalisable method for estimating safety in the presence of the time variant safety and the RTM effects.
Resumo:
We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms by using indirect inference. ABC methods are useful for posterior inference in the presence of an intractable likelihood function. In the indirect inference approach to ABC the parameters of an auxiliary model fitted to the data become the summary statistics. Although applicable to any ABC technique, we embed this approach within a sequential Monte Carlo algorithm that is completely adaptive and requires very little tuning. This methodological development was motivated by an application involving data on macroparasite population evolution modelled by a trivariate stochastic process for which there is no tractable likelihood function. The auxiliary model here is based on a beta–binomial distribution. The main objective of the analysis is to determine which parameters of the stochastic model are estimable from the observed data on mature parasite worms.
Resumo:
This paper presents an approach to building an observation likelihood function from a set of sparse, noisy training observations taken from known locations by a sensor with no obvious geometric model. The basic approach is to fit an interpolant to the training data, representing the expected observation, and to assume additive sensor noise. This paper takes a Bayesian view of the problem, maintaining a posterior over interpolants rather than simply the maximum-likelihood interpolant, giving a measure of uncertainty in the map at any point. This is done using a Gaussian process framework. To validate the approach experimentally, a model of an environment is built using observations from an omni-directional camera. After a model has been built from the training data, a particle filter is used to localise while traversing this environment
Resumo:
Discrete Markov random field models provide a natural framework for representing images or spatial datasets. They model the spatial association present while providing a convenient Markovian dependency structure and strong edge-preservation properties. However, parameter estimation for discrete Markov random field models is difficult due to the complex form of the associated normalizing constant for the likelihood function. For large lattices, the reduced dependence approximation to the normalizing constant is based on the concept of performing computationally efficient and feasible forward recursions on smaller sublattices which are then suitably combined to estimate the constant for the whole lattice. We present an efficient computational extension of the forward recursion approach for the autologistic model to lattices that have an irregularly shaped boundary and which may contain regions with no data; these lattices are typical in applications. Consequently, we also extend the reduced dependence approximation to these scenarios enabling us to implement a practical and efficient non-simulation based approach for spatial data analysis within the variational Bayesian framework. The methodology is illustrated through application to simulated data and example images. The supplemental materials include our C++ source code for computing the approximate normalizing constant and simulation studies.