985 resultados para Light pulse generators
Resumo:
The group velocity of the probe light pulse (GVPLP) propagating through an open Lambda-type atomic system with a spontaneously generated coherence is investigated when the weak probe and strong driving light fields have different frequencies. It is found that adjusting the detuning or Rabi frequency of the probe light field can realize switching of the GVPLP from subluminal to superluminal. Changing the relative phase between the probe and driving light. elds or atomic exit and injection rates can lead to GVPLP varying in a wider range, but cannot induce transformation of the property of the GVPLP. The absolute value of the GVPLP always increases with Rabi frequency of the driving light field increasing. For subluminal and superluminal propagation, the system always exhibits the probe absorption, and GVPLP is mainly determined by the slope of the steep dispersion.
Resumo:
We investigate the group velocity of the probe light pulse in an open V-type system with spontaneously generated coherence. We find that, not only varying the relative phase between the probe and driving pulses can but varying the atomic exit rate or incoherent pumping rate also can manipulate dramatically the group velocity, even make the pulse propagation switching from subluminal to superluminal; the subliminal propagation can be companied with gain or absorption, but the superluminal propagation is always companied with absorption. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space-time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field. (C) 2009 Optical Society of America
Resumo:
"March 1975."
Resumo:
Self-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.
Resumo:
Relativistic self-channeling of a picosecond laser pulse in a preformed plasma near critical density has been observed both experimentally and in 3D particle-in-cell simulations. Optical probing measurements indicate the formation of a single pulsating propagation channel, typically of about 5 mu m in diameter. The computational results reveal the importance in the channel formation of relativistic electrons traveling with the light pulse and of the corresponding self-generated magnetic field.
Resumo:
O objetivo deste estudo foi determinar o efeito da polimerização gradual, mediante a utilização de aparelhos de Quartzo-Tungustênio-Halógena (QTH) e Arco de Plasma de Xenônio (PAC), no selamento marginal de restaurações classe V em resina composta com margens localizadas em dentina. Setenta e cinco incisivos bovinos receberam preparos de cavidades classe V, na raiz, com o intuito de situar as margens cavitárias em dentina. Os dentes foram divididos em cinco grupos de acordo com o método de fotoativação. As cavidades, depois de condicionadas, foram tratadas com o sistema adesivo Single Bond (3M Dental) e restauradas com a resina composta Z100 (3M Dental) pela técnica incremental. A fotoativação foi realizada para cada grupo como descrito a seguir: Grupo I: PAC pelo método de fotoativação constante: 1600mW/cm2 – 3s; Grupo II: PAC pelo método de fotoativação por passos (800mW/cm2 – 2s, subindo automaticamente para 1600mW/cm2 – 4s); Grupo III: QTH pelo método de fotoativação constante: 400 mW/cm2 – 40s; Grupo IV: QTH pelo método de fotoativação em rampa: 100 a 600 mW/cm2 – 15s, permanecendo a 600mW/cm2 por mais 25s; Grupo V: QTH pelo método de fotoativação por pulso: 200 mW/cm2 – 3s, tempo de espera de 3min.e a seguir 600mW/cm2 – 30s. Os dentes foram armazenados em água destilada a 37ºC por 30 dias e então submetidos à ciclagem térmica, por 500 ciclos à 5 ºC e 55 ºC. Os ápices dos dentes foram selados com resina composta e os dentes foram cobertos com duas camadas de esmalte para unha, antes da sua imersão em fucsina básica a 0,5%. Os dentes foram seccionados e os cortes foram escaneados para avaliação da área infiltrada por corante por um programa de computador (Image Tools). Os cortes foram também visualizados com lupa para a determinação do grau de penetração do corante na interface dente-restauração por escores. Diferenças estatisticamente significantes foram observadas entre os grupos quanto ao grau e à área de penetração de corante (p < 0,05). Os grupos I e II apresentaram valores significantemente mais altos de infiltração e penetração do corante que os grupos III, IV e V. Em conclusão, o uso da fonte de PAC, no modo constante e por passos, resultou em valores significantemente maiores de infiltração marginal quando comparados com a intensidade de luz média emitida pelos aparelhos de QTH. Os métodos de fotoativação por pulso, rampa e continuo com a fonte de QTH resultaram num grau similar de microinfiltração.
Resumo:
We report the expression of the barley (Hordeum vulgare L.) COR (cold-regulated) gene cor14b (formerly pt59) and the accumulation of its chloroplast-localized protein product. A polyclonal antibody raised against the cor14b-encoded protein detected two chloroplast COR proteins: COR14a and COR14b. N-terminal sequencing of COR14a and expression of cor14b in Arabidopsis plants showed that COR14a is not encoded by the cor14b sequence, but it shared homology with the wheat (Triticum aestivum L.) WCS19 COR protein. The expression of cor14b was strongly impaired in the barley albino mutant an, suggesting the involvement of a plastidial factor in the control of gene expression. Low-level accumulation of COR14b was induced by cold treatment in etiolated plants, although cor14b expression and protein accumulation were enhanced after a short light pulse. Light quality was a determining factor in regulating gene expression: red or blue but not far-red or green light pulses were able to promote COR14b accumulation in etiolated plants, suggesting that phytochrome and blue light photoreceptors may be involved in the control of cor14b gene expression. Maximum accumulation of COR14b was reached only when plants were grown and/or hardened under the standard photoperiod. The effect of light on the COR14b stability was demonstrated by using transgenic Arabidopsis. These plants constitutively expressed cor14b mRNAs regardless of temperature and light conditions; nevertheless, green plants accumulated about twice as much COR14b protein as etiolated plants.
Resumo:
Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.
Resumo:
Three light-regulated genes, chlorophyll a/b-binding protein (CAB), ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, and chalcone synthase (CHS), are demonstrated to be up-regulated in the high-pigment-1 (hp-1) mutant of tomato (Lycopersicon esculentum Mill.) compared with wild type (WT). However, the pattern of up-regulation of the three genes depends on the light conditions, stage of development, and tissue studied. Compared with WT, the hp-1 mutant showed higher CAB gene expression in the dark after a single red-light pulse and in the pericarp of immature fruits. However, in vegetative tissues of light-grown seedlings and adult plants, CAB mRNA accumulation did not differ between WT and the hp-1 mutant. The ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit mRNA accumulated to a higher level in the hp-1 mutant than WT under all light conditions and tissues studied, whereas CHS gene expression was up-regulated in de-etiolated vegetative hp-1-mutant tissues only. The CAB and CHS genes were shown to be phytochrome regulated and both phytochrome A and B1 play a role in CAB gene expression. These observations support the hypothesis that the HP-1 protein plays a general repressive role in phytochrome signal transduction.
Resumo:
"September 1960."
Resumo:
This thesis presents a detailed, experiment-based study of generation of ultrashort optical pulses from diode lasers. Simple and cost-effective techniques were used to generate high power, high quality optical short pulses at various wavelength windows. The major achievements presented in the thesis is summarised as follows. High power pulses generation is one of the major topics discussed in the thesis. Although gain switching is the simplest way for ultrashort pulse generation, it proves to be quite effective to deliver high energy pulses on condition that the pumping pulses with extremely fast rising time and high enough amplitude are applied on specially designed pulse generators. In the experiment on a grating-coupled surface emitting laser (GCSEL), peak power as high as 1W was achieved even when its spectral bandwidth was controlled within 0.2nm. Another experiment shows violet picosecond pulses with peak power as high as 7W was achieved when the intensive electrical pulses were applied on optimised DC bias to pump on InGaN violet diode laser. The physical mechanism of this phenomenon, as we considered, may attributed to the self-organised quantum dots structure in the laser. Control of pulse quality, including spectral quality and temporal profile, is an important issue for high power pulse generation. The ways to control pulse quality described in the thesis are also based on simple and effective techniques. For instance, GCSEL used in our experiment has a specially designed air-grating structure for out-coupling of optical signals; hence, a tiny flat aluminium mirror was placed closed to the grating section and resulted in a wavelength tuning range over 100nm and the best side band suppression ratio of 40dB. Self-seeding, as an effective technique for spectral control of pulsed lasers, was demonstrated for the first time in a violet diode laser. In addition, control of temporal profile of the pulse is demonstrated in an overdriven DFB laser. Wavelength tuneable fibre Bragg gratings were used to tailor the huge energy tail of the high power pulse. The whole system was compact and robust. The ultimate purpose of our study is to design a new family of compact ultrafast diode lasers. Some practical ideas of laser design based on gain-switched and Q-switched devices are also provided in the end.
Resumo:
We demonstrate light pulse combining and pulse compression using a continuous-discrete nonlinear system implemented in a multi-core fiber (MCF). It is shown that the pulses initially injected into all of the cores of a ring MCF are combined by nonlinearity into a small number of cores with simultaneous pulse compression. We demonstrate the combining of 77% of the energy into one core with pulse compression over 14× in a 20-core MCF. We also demonstrate that a suggested scheme is insensitive to the phase perturbations. Nonlinear spatio-temporal pulse manipulation in multi-core fibers can be exploited for various applications, including pulse compression, switching, and combining.